試題分析:(1)作OF⊥BD于點F,連接OD,根據(jù)圓周角定理可得出∠DOB=120°,再由OB=OD=
AC=2,可得出∠OBD的度數(shù),也可得出OF的長度;
(2)設BE=2x,則可表示出DF、EF的長度,從而可解出x的值,在RT△OEF中,利用三角函數(shù)值的知識可求出∠OED的度數(shù),也可得出cos∠OED的值,判斷出DO⊥AC,然后利用等腰直角三角形的性質(zhì)可得出CD的長度.
(1)作OF⊥BD于點F,連接OD,
∵∠BAD=60°,
∴∠BOD=2∠BAD=120°,
又∵OB=OD,
∴∠OBD=30°,
∵AC為⊙O的直徑,AC=4,
∴OB=OD=2.
在Rt△BOF中,∵∠OFB=90°,OB=2,∠OBF=30°,
∴OF=OB•sin∠OBF=2sin30°=1,
即點O到BD的距離等于1;
(2)∵OB=OD,OF⊥BD于點F,
∴BF=DF.
由DE=2BE,設BE=2x,則DE=4x,BD=6x,EF=x,BF=3x.
∵BF=OB•cos30°
∴
,
在Rt△OEF中,∠OFE=90°,∵tan∠OED=
∴∠OED=60°,cos∠OED=
,
∴∠BOE=∠OED-∠OBD=30°,
∴∠DOC=∠DOB-∠BOE=90°,
∴∠C=45°
∴
.
點評:解答此類綜合性題目,要求我們熟練掌握等腰三角形的性質(zhì)、三角函數(shù)值及勾股定理等知識點,做到將所學的知識融會貫通,難度較大.