(2008•寶安區(qū)二模)如圖,AB是直徑為10cm的⊙O的一條弦,若AB=5
3
cm,則△OAB的面積是(  )
分析:過圓心O作OD⊥AB于點D.由垂徑定理求得AD=BD=
1
2
AB;然后在直角三角形OAD中利用勾股定理即可求得OD的長度;最后根據(jù)三角形的面積公式來求△OAB的面積.
解答:解:過圓心O作OD⊥AB于點D,則AD=BD=
1
2
AB=
5
3
2

在Rt△OAD中,OA=5cm,AD=
5
3
2

由勾股定理知,OD=
OA2-AD2
=
5
2
,
則△OAB的面積為:
1
2
AB•OD=
1
2
×5
3
cm×
5
2
cm=
25
3
4
cm2

故選C.
點評:本題考查了垂徑定理、勾股定理.此類在圓中涉及弦長、半徑的計算的問題,常把半弦長,圓心到弦距離轉換到同一直角三角形中,然后通過直角三角形予以求解,常見輔助線是過圓心作弦的垂線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•寶安區(qū)二模)下列運算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•寶安區(qū)二模)如圖,實心圓臺的左視圖是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•寶安區(qū)二模)在線段、平行四邊形、菱形、正方形、梯形、等邊三角形中既是軸對稱圖形又是中心對稱圖形的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•寶安區(qū)二模)有三個足球隊自發(fā)組織比賽,規(guī)則規(guī)定由抽簽決定比賽程序:三張簽上分別寫上“A”、“A”和“B”,抽到“A”的兩個隊通過比賽后勝者進入決賽,抽到“B”的直接進入決賽.那么每個隊直接進入決賽的可能性是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•寶安區(qū)二模)如圖,按照流程輸入的數(shù)據(jù)進入第一個艙后,運算結果全部進入第二個艙,經(jīng)過第二次運算后全部輸出的數(shù)據(jù)是( 。

查看答案和解析>>

同步練習冊答案