【題目】探究:
(1)如圖1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求證:∠P=90°+∠A.
(2)如圖2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何數(shù)量關(guān)系,并證明你的結(jié)論.
(3)如圖3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.
【答案】(1)見(jiàn)解析;(2)∠A=∠P,理由見(jiàn)解析;(3)∠P=90°﹣∠A,理由見(jiàn)解析
【解析】
(1)根據(jù)三角形內(nèi)角和定理以及角平分線的性質(zhì)進(jìn)行解答即可:
(2)根據(jù)角平分線的定義以及一個(gè)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和,可求出∠A的度數(shù),根據(jù)補(bǔ)角的定義求出∠ACB的度數(shù),根據(jù)三角形的內(nèi)角和即可求出∠P的度數(shù),即可求出結(jié)果,
(3)根據(jù)三角形的外角性質(zhì)、內(nèi)角和定理、角平分線的定義探求并證明.
證明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.
又∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC=∠ABC,
∠PCB=∠ACB,
∴∠PBC+∠PCB=(180°﹣∠A),
根據(jù)三角形內(nèi)角和定理可知∠BPC=180°﹣(180°﹣∠A)=90°+∠A;
(2)∠A=∠P,理由如下:
∵BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,
∴∠PBC=∠ABC,∠PCE=∠ACE.
∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,
∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,
∴∠ACP=∠ABC+∠A,
∴∠ABC+∠A=∠PBC+∠P,
∴∠A=∠P.
(3)∠P=90°﹣∠A,理由如下:
∵P點(diǎn)是外角∠CBF和∠BCE的平分線的交點(diǎn),∠P+∠PBC+∠PCB=180°
∴∠P=180°﹣(∠PBC+∠PCB)
=180°﹣(∠FBC+∠ECB)
=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(∠A+180°)
=90°﹣∠A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,試探究并回答下列問(wèn)題:
(1)是否存在一點(diǎn),使它到兩點(diǎn)的距離之和等于?并說(shuō)明理由;
(2)是否存在一點(diǎn),使它到兩點(diǎn)的距離之和等于?如果存在,那么它的位置是唯一的嗎?
(3)當(dāng)點(diǎn)到兩點(diǎn)的距離之和等于時(shí),試說(shuō)明點(diǎn)的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是一個(gè)數(shù)值轉(zhuǎn)換機(jī)的示意圖.
(1)當(dāng)輸入x=-4,y=1時(shí),則輸出結(jié)果為 ,當(dāng)輸入x=-1,y=2,則輸出結(jié)果為 .
(2)用含x、y的代數(shù)式表示輸出結(jié)果為 .
(3)若輸入x的值為1,輸出結(jié)果為11時(shí),求輸入y的值.
(4)若(1)中輸出的兩個(gè)結(jié)果依次對(duì)應(yīng)數(shù)軸上的點(diǎn)A,B,點(diǎn)C為A、B之間的一個(gè)動(dòng)點(diǎn),若將數(shù)軸以點(diǎn)C為折點(diǎn),將此數(shù)軸向右對(duì)折,若A點(diǎn)與數(shù)軸上的D點(diǎn)重合,且B、D兩點(diǎn)之間的距離為1,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫(huà)有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;
(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹(shù)狀圖)說(shuō)明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.
(1)按要求填空:
①你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于 ;
②請(qǐng)用兩種不同的方法表示圖②中陰影部分的面積:
方法1:
方法2:
③觀察圖②,請(qǐng)寫(xiě)出代數(shù)式(m+n)2,(m﹣n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系: ;
(2)根據(jù)(1)題中的等量關(guān)系,解決如下問(wèn)題:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.
(3)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示,如圖③,它表示了 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的位置如圖1所示,點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(-3,1).矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(0≤x≤3)秒,第一象限內(nèi)的圖形面積為y,則下列圖象中表示y與x的函數(shù)關(guān)系的圖象大致是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).將△OAB進(jìn)行n次變換得到△OAnBn,則An(___,__),Bn(_____,_____).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m。
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由;
(3)若球一定能越過(guò)球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校 5 千米的圖書(shū)館看書(shū),途中小凡從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開(kāi)學(xué)校的路程 s(千米)與時(shí)間 t(分鐘)的關(guān)系,請(qǐng)根據(jù)圖象提供的信息回答問(wèn)題:
(1) 先出發(fā),先出發(fā)了 分鐘;
(2)當(dāng) t= 分鐘時(shí),小凡與小光在去圖書(shū)館的路上相遇;
(3)小凡與小光從學(xué)校到圖書(shū)館的平均速度各是多少千米/小時(shí)?(不包括停留的時(shí)間)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com