【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過程如下:

第一步:如圖,先把正方形ABCD對(duì)折,折痕為MN;

第二步點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形

問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.

【答案】線段垂直平分線上的點(diǎn)到線段兩端的距離相等

【解析】

根據(jù)折疊的性質(zhì)進(jìn)行分析解答即可.

將正方形ABCD對(duì)折,折痕為MN,

∴MN垂直平分BC,

點(diǎn)PMN上,

∴PB=PC(線段垂直平分線上的點(diǎn)到線段兩端的距離相等).

故答案為:線段垂直平分線上的點(diǎn)到線段兩端的距離相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當(dāng)DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當(dāng)點(diǎn)A,D,E不在同一直線上時(shí),設(shè)直線ADBE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有兩定點(diǎn)AB,點(diǎn)表示的數(shù)為6,點(diǎn)B在點(diǎn)A的左側(cè),且AB=20,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0.

1)寫出數(shù)軸上點(diǎn)B表示的數(shù)______,點(diǎn)P表示的數(shù)用含t的式子表示:_______

2)設(shè)點(diǎn)MAP的中點(diǎn),點(diǎn)NPB的中點(diǎn).點(diǎn)P在直線AB上運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不變化,求出線段MN的長(zhǎng)度.

3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、R同時(shí)出發(fā);當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)?與點(diǎn)R的距離為2個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若關(guān)于的一元一次方程的解為,則稱該方程為“和解方程”.例如:方程 的解為,而, 則方程為“和解方程".請(qǐng)根據(jù)上述規(guī)定解答下列問題:(1)已知關(guān)于的一元一次方程是“和解方程”,則的值為________(2)己知關(guān)于的一元一次方程是“和解方程”,并且它的解是,則的值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實(shí)數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,根據(jù)材料1

m+n=1,mn=﹣1

根據(jù)上述材料解決下面問題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實(shí)數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實(shí)數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.

(1)由圖1通過觀察、猜想可以得到線段AC與線段BC的數(shù)量關(guān)系為___,位置關(guān)系為__;

(2)保持圖1中的△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中的位置(當(dāng)垂線ADBE在直線MN的同側(cè)).試探究線段AD、BEDE長(zhǎng)度之間有什么關(guān)系?并給予證明(第一問中得到的猜想結(jié)論可以直接在證明中使用);

(3)保持圖2中的△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段ADBE、DE長(zhǎng)度之間有___關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有一拋物線其表達(dá)式為.

(1)當(dāng)該拋物線過原點(diǎn)時(shí),求的值;

(2)坐標(biāo)系內(nèi)有一矩形OABC,其中、.

①直接寫出C點(diǎn)坐標(biāo);

②如果拋物線與該矩形有2個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市晶泰星公司安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲產(chǎn)品或件乙產(chǎn)品.根據(jù)市場(chǎng)行情測(cè)得,甲產(chǎn)品每件可獲利元,乙產(chǎn)品每件可獲利.而實(shí)際生產(chǎn)中,生產(chǎn)乙產(chǎn)品需要數(shù)外支出一定的費(fèi)用,經(jīng)過核算,每生產(chǎn)件乙產(chǎn)品,當(dāng)天每件乙產(chǎn)品平均荻利減少元,設(shè)每天安排人生產(chǎn)乙產(chǎn)品.

(1)根據(jù)信息填表:

產(chǎn)品種類

每天工人數(shù)()

每天產(chǎn)量()

每件產(chǎn)品可獲利潤(rùn)()

(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多元,試問:該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(jí)一班和二班各推選名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了個(gè)球,兩個(gè)班選手的進(jìn)球數(shù)統(tǒng)計(jì)如下表,請(qǐng)根據(jù)表中數(shù)據(jù)回答問題.

進(jìn)球數(shù)(個(gè))

一班人數(shù)(人)

二班人數(shù)(人)

填表;

平均數(shù)

中位數(shù)

眾數(shù)

方差

一班

2.6

二班

7

7

7

如果要從這兩個(gè)班中選出一個(gè)班代表級(jí)部參加學(xué)校的投籃比賽,爭(zhēng)取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭(zhēng)取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?

查看答案和解析>>

同步練習(xí)冊(cè)答案