已知直線y=x+4與x軸,y軸分別交于A、B兩點(diǎn),∠ABC=60°,BC與x軸交于點(diǎn)C.
(1)試確定直線BC的解析式.
(2)若動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng)(不與A、C重合),同時(shí)動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CBA向點(diǎn)A運(yùn)動(dòng)(不與C、A重合),動(dòng)點(diǎn)P的運(yùn)動(dòng)速度是每秒1個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度.設(shè)△APQ的面積為S,P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,當(dāng)△APQ的面積最大時(shí),y軸上有一點(diǎn)M,平面內(nèi)是否存在一點(diǎn)N,使以A、Q、M、N為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
解:(1)由已知得A點(diǎn)坐標(biāo)(-4,0),B點(diǎn)坐標(biāo)(0,4﹚ ∵OA=4 OB=4 ∴∠BAO=60° ∵∠ABC=60° ∴△ABC是等邊三角形 ∵OC=OA=4 ∴C點(diǎn)坐標(biāo)(4,0) 設(shè)直線BC解析式為y=kx+b
∴ ∴直線BC的解析式為y=-(2分) (2)當(dāng)P點(diǎn)在AO之間運(yùn)動(dòng)時(shí),作QH⊥x軸. ∵ ∴ ∴QH=t ∴S△APQ=AP·QH=t·t=t2(0<t≤4)(2分) 同理可得S△APQ=t·(8)=-(4≤t<8)(2分) (3)存在,(4,0),(-4,8)(-4,-8)(-4,)(4分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=2x+8與x軸和y軸的交點(diǎn)的坐標(biāo)分別是_______、_______;與兩條坐標(biāo)
軸圍成的三角形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012學(xué)年人教版八年級(jí)寒假作業(yè)天天練習(xí)數(shù)學(xué)一次函數(shù)單元卷 題型:單選題
已知直線y=2x+8與x軸和y軸的交點(diǎn)的坐標(biāo)分別是_______、_______;與兩條坐標(biāo)
軸圍成的三角形的面積是__________.學(xué)科網(wǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆河南省新密市興華公學(xué)九年級(jí)3月第一次摸擬考試數(shù)學(xué)試卷(帶解析) 題型:填空題
如圖,已知直線y1=x+m與y2=kx-1相交于點(diǎn)P(-1,1),則關(guān)于x的不等式x+m>kx-1的解集的是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012學(xué)年人教版八年級(jí)寒假作業(yè)天天練習(xí)數(shù)學(xué)一次函數(shù)單元卷 題型:填空題
已知直線y=2x+8與x軸和y軸的交點(diǎn)的坐標(biāo)分別是_______、_______;與兩條坐標(biāo)
軸圍成的三角形的面積是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com