設(shè)二次函數(shù)y=(a+b)x2+2cx-(a-b),其中a,b,c分別為△ABC的三邊.
(1)當這個二次函數(shù)的圖象與x軸只有一個交點時,試判斷△ABC的形狀;
(2)當x=-時,二次函數(shù)的最小值為-,試判斷△ABC的形狀.
科目:初中數(shù)學 來源:非常講解·教材全解全析 數(shù)學 九年級下 (配北師大課標) 配北師大課標 題型:044
如圖,設(shè)二次函數(shù)y=ax2+bx+c的圖象與x軸交于兩點A,B,與y軸交于點C,若AC=20,BC=15,∠ACB=90°,求這個二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(甘肅蘭州卷)數(shù)學(帶解析) 題型:解答題
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=
。
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(甘肅蘭州卷)數(shù)學(解析版) 題型:解答題
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=
。
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.
查看答案和解析>>
科目:初中數(shù)學 來源:甘肅省中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|====;
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com