(2010•大連二模)有一張長比寬多8cm的矩形紙板.如果在紙板的四個角處各剪去一個正方形(如圖所示),可制成高是4cm,容積是512cm3的一個無蓋長方體紙盒.
(1)求矩形紙板的長和寬;
(2)在操作過程中,由于不小心,矩形紙板被剪掉一角,其直角邊長分別為3cm和6cm.如果在剩余的紙板上先裁剪一個各邊與原矩形紙板各邊平行或重合的矩形,然后再按如圖裁剪方式制作高仍是4cm的無蓋長方體紙盒,那么你認為如何裁剪才能使制作的長方體紙盒的容積最大,請畫出草圖,并說明理由.

【答案】分析:(1)設出矩形紙板的寬,根據(jù)長比寬多8cm,即可表示出紙板的長,然后根據(jù)長方體紙盒的容積列方程求出紙板的長和寬.
(2)首先根據(jù)已知條件畫出草圖,設能夠裁剪的矩形為CGHP,并延長GH交ND于M,由于HM∥AM,易證得△HME∽△ANE,可得關于HM、AN、ME、NE的比例關系式,然后分兩種情況考慮:
①當3cm的邊在BN上時,可設NM為x,根據(jù)上面得到的比例線段,可求得HM的表達式,進而可表示出HG的長,HP的長易求得,然后根據(jù)(1)題的計算方法,表示出長方體紙盒的容積,即可得到關于紙盒容積和NM長的函數(shù)關系式,根據(jù)函數(shù)的性質(zhì)以及自變量的取值范圍,即可得到長方體紙盒的最大容積及對應的NM即BG的長;
②當6cm的邊在BN上時,解法同①;
然后比較兩種情況下,所得長方體紙盒的最大容積,即可確定裁剪方案.
解答:解:(1)設矩形紙板的寬為xcm,則長為(x+8)cm.(1分)
根據(jù)題意,得4(x-8)(x+8-8)=512,(3分)
解得,x1=16,x2=-8(不合題意,舍去)(4分)
∴x+8=24(cm).(5分)
答:矩形紙板的長和寬分別24cm,16cm.

(2)設所裁剪的矩形是CGHP,延長GH交ND于點M
∵HM∥BN,
∴△HME∽△ANE,

分兩種情況:
當3cm的邊在BN上時(如圖1)(6分)
設NM為x,則
∴HM=,∴GH=16-()=;
∴V=4()(24-x-8)(8分)
=-2(x2-6x-160)=-2(x-3)2+338.
∴當NM為3cm時,長方體紙盒的容積最大.(9分)
當6cm的邊在BN上時(如圖2).(10分)
設NM為x,
,∴HM=6-2x
∴GH=16-(6-2x)=10+2x,
∴V=4(10+2x-8)(24-x-8),
=-8(x-7.5)2+578.(11分)
∵0≤x≤3,且-8<0,∴V隨x增大而增大,
∴當NM為3cm時,長方體紙盒的容積最大.(12分)
綜上所知,在BC上取點G,使BG=3cm,這樣裁剪的矩形GHPC能使所制作的長方體紙盒的容積最大.
點評:此題考查了矩形的性質(zhì)、相似三角形的判定和性質(zhì)以及二次函數(shù)最值的應用;要注意的是(2)題中,3cm、6cm的邊都有可能在BN上,因此要分類討論,不要漏解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年江蘇省連云港市新海實驗中學中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•大連二模)求的值,其中

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省大連市中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•大連二模)如圖,在四邊形ABCD中,AB∥CD,AB=CD,AB=kBC,點P是四邊形ABCD內(nèi)一點,且∠BAP=∠BCP,連接PB、PD.猜想∠ABP與∠ADP的關系,并證明.
說明:如果你經(jīng)過反復探索沒有解決問題,可以補充條件k=1.在補充條件后,先畫圖,再完成上面的問題.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省大連市中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•大連二模)足球比賽中,某運動員將在地面上的足球?qū)χ蜷T踢出,圖中的拋物線是足球的飛行高度y(m)關于飛行時間x(s)的函數(shù)圖象(不考慮空氣的阻力),已知足球飛出1s時,足球的飛行高度是2.44m,足球從飛出到落地共用3s.
(1)求y關于x的函數(shù)關系式;
(2)足球的飛行高度能否達到4.88米?請說明理由;
(3)假設沒有攔擋,足球?qū)⒉林蜷T左上角射入球門,球門的高為2.44m(如圖所示,足球的大小忽略不計).如果為了能及時將足球撲出,那么足球被踢出時,離球門左邊框12m處的守門員至少要以多大的平均速度到球門的左邊框?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省大連市中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•大連二模)如圖,△ABC內(nèi)接于⊙O,AB是直徑,點D是弧BC的中點,連接AD,交BC于點F.
(1)過點D作DE∥BC,交AC的延長線于點E,判斷DE是否是⊙O的切線,并說明理由;
(2)若CD=6,AC:AF=4:5,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案