如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,若E,F(xiàn)是AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為1cm/s.
(1)當(dāng)E與F不重合時,四邊形DEBF是平行四邊形嗎?說明理由;
(2)若BD=12cm,AC=16cm,當(dāng)運動時間t為何值時,以D、E、B、F為頂點的四邊形是矩形?
【答案】分析:(1)判斷四邊形DEBF是否為平行四邊形,需證明其對角線是否互相平分;已知了四邊形ABCD是平行四邊形,故OB=OD;而E、F速度相同,方向相反,故OE=OF;由此可證得BD、EF互相平分,即四邊形DEBF是平行四邊形;
(2)若以D、E、B、F為頂點的四邊形是矩形,則必有BD=EF,可據(jù)此求出時間t的值.
解答:解:(1)當(dāng)E與F不重合時,四邊形DEBF是平行四邊形
理由:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD;
∵E、F兩動點,分別從A、C兩點以相同的速度向C、A運動,
∴AE=CF;
∴OE=OF;
∴BD、EF互相平分;
∴四邊形DEBF是平行四邊形;

(2)∵四邊形DEBF是平行四邊形,
∴當(dāng)BD=EF時,四邊形DEBF是矩形;
∵BD=12cm,
∴EF=12cm;
∴OE=OF=6cm;
∵AC=16cm;
∴OA=OC=8cm;
∴AE=2cm或AE=14cm;
由于動點的速度都是1cm/s,
所以t=2(s)或t=14(s);
故當(dāng)運動時間t=2s或14s時,以D、E、B、F為頂點的四邊形是矩形.
點評:熟練掌握平行四邊形、矩形的判定和性質(zhì),是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案