觀察下列方程:
(1)
1
x
=
2
x+2
;(2)
1
x
=
3
x+3
;(3)
1
x
=
4
x+4
;(4)
1
x
=
5
x+5
;…
尋找規(guī)律,然后寫出第n個(gè)方程并求該方程的解.
分析:先由所給方程找出規(guī)律,根據(jù)規(guī)律寫出第n個(gè)方程再求該方程的解.
解答:解:(1)可化為
1
x
=
1+1
x+1+1
;(2)可化為
1
x
=
2+1
x+2+1
;(3)可化為
1
x
=
3+1
x+3+1
…;
經(jīng)觀察,第n個(gè)方程為:
1
x
=
n+1
x+n+1

將方程兩邊同乘以x(x+n+1),得
x+n+1=(n+1)x,即nx=n+1.
由題意知n≠0
∴x=
n+1
n

經(jīng)檢驗(yàn)x=
n+1
n
是原方程的解.
點(diǎn)評(píng):本題屬規(guī)律性題目,應(yīng)先根據(jù)所給方程找出規(guī)律,根據(jù)規(guī)律列出第n個(gè)方程,最后求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列方程:
(1)
x-4
0.3
-
x+3
0.5
=1.6
;(2)
8
x2-1
+1=
x+8
x-1
;(3)1-
1
x
+1
3
=x
;(4)
x
2
-1
2
=x

其中是關(guān)于x的分式方程的有(  )
A、(1)B、(2)
C、(2)(3)D、(2)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

認(rèn)真觀察下列方程,指出使用何種方法解比較適當(dāng):
(1)4x2+16x=5,應(yīng)選用
 
法;
(2)2(x+2)(x-1)=(x+2)(x+4),應(yīng)選用
 
法;
(3)2x2-3x-3=0,應(yīng)選用
 
法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、觀察下列方程并回答問題:①x2-1=0;②x2+x-2=0;③x2+2x-3=0;④x2+3x-4=0…
(1)請(qǐng)你根據(jù)這列方程的特點(diǎn)寫出第n個(gè)方程;
(2)直接寫出第2010個(gè)方程的根?
(3)說出這個(gè)方程的根有什么特點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列方程:①
1
x
=
2
x+2
;②
1
x
=
3
x+3
;③
1
x
=
4
x+4
;④
1
x
=
5
x+5
;…根據(jù)以上規(guī)律,第n個(gè)方程以及它的解是( 。
A、
1
x
=
n
x+n
,x=
n
n-1
B、
1
x
=
n+1
x+n+1
,x=
n+1
n
C、
1
x
=
n
x+n
,x=
n-1
n
D、
1
x
=
n+1
x+n+1
,x=
n
n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、觀察下列方程:
①2x2-27x+91=0;②2x2-23x+66=0;③2x2-19x+45=0;④2x2-15x+28=0;⑤2x2-11x+15=0;…
上面每一個(gè)方程的二次項(xiàng)系數(shù)都是2,各個(gè)方程的解都不同,但每個(gè)方程b2-4ac的值均1.
(1)請(qǐng)你寫出兩個(gè)方程,使每個(gè)方程的二次項(xiàng)系數(shù)都是2,且每個(gè)方程的b2-4ac的值也都是1,但每個(gè)方程的解與已知的5個(gè)方程的解都不相同.
(2)對(duì)于一般形式的一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),能否作出一個(gè)新方程ax2+b′x+c′=0,使b2-4ac與b′2-4ac′相等?若能,請(qǐng)寫出所作的新的方程(b′,c′需用a,b,c表示),并說明理由;若不能,也請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案