【題目】如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
【答案】(1)證明見解析(2)GE=BE+GD成立
【解析】試題分析:(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF;
(2)由(1)得CE=CF,∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,所以可得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因為DF=BE,所以可證出GE=BE+GD成立.
試題解析:(1)∵在正方形ABCD中,BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF(SAS)
∴CE=CF.
(2)GE=BE+GD成立.
理由:由(1),得△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠BCD=∠ECF=90°,
又∵∠GCE=45°,
∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG(SAS),
∴GE=GF,
∴GE=DF+GD=BE+GD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設(shè)顧客預(yù)計累計購物元().
(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;
(2)李明準(zhǔn)備購買500元的商品,你認為他應(yīng)該去哪家超市?請說明理由;
(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖17-Z-12所示,等腰三角形ABC的底邊長為8 cm,腰長為5 cm,一動點P在底邊上從點B向點C以0.25 cm/s的速度移動,請你探究:當(dāng)點P運動幾秒時,點P與頂點A的連線AP與腰垂直?
圖17-Z-12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( 。
A.10
B.11
C.12
D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圖甲是一個長為2m,寬為2n的長方形,沿圖甲中虛線用剪刀均勻分成四小塊長方形,然后按圖乙的形狀拼成一個正方形.
(1)圖乙中陰影部分正方形的邊長為 (用含字母m,n的整式表示).
(2)請用兩種不同的方法求圖乙中陰影部分的面積.
方法一: ;
方法二: .
(3)觀察圖乙,并結(jié)合(2)中的結(jié)論,你能寫出下列三個整式:(m+n)2,(m﹣n)2,mn之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=9,ab=5,求(a﹣b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖①,由點A和點B可確定 條直線;
觀察圖②,由不在同一直線上的三點A、B和C最多能確定 條直線;
(1)動手畫一畫圖③中經(jīng)過A、B、C、D四點的所有直線,最多共可作 條直線;
(2)在同一平面內(nèi)任三點不在同一直線的五個點最多能確定 條直線、n個點(n≥2)最多能確定 條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人共收集郵票若干張,其中是2000年以前的國內(nèi)外發(fā)行的郵票,是2001年國內(nèi)發(fā)行的,是2002年國內(nèi)發(fā)行的,此外尚有不足100張的國外郵票.求該人共有多少張郵票.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com