【題目】解方程
(1)
(2)
(3)
(4)
【答案】(1);(2);(3)7;(4)5﹣
【解析】
(1)利用加減消元法將①+②,求出x,再將x的值代入①即可;
(2)利用加減消元法將①﹣②,求出y,再將y的值代入①即可;
(3)利用完全平方公式將展開,并化簡,再合并同類二次根式即可;
(4)利用二次根式的公式、任何非0數(shù)的0次冪都等于1和去絕對值法則化簡,再合并同類二次根式即可.
解:(1),
①+②得3x=9,解得x=3,
把x=3代入①得3﹣y=4,解得y=﹣1,
所以方程組的解為;
(2),
①﹣②得4y=16,解得y=4,
把y=4代入①得x﹣4=6,解得x=10,
所以方程組的解為;
(3)原式=2+2+5﹣2
=7;
(4)原式=+1+1﹣
=3+2﹣
=5﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由不同生產(chǎn)商提供套校服參加比選,甲、乙、兩三個同學(xué)分別參加比選,比選后結(jié)果是:每套校服至少有一人選中,且每人都選中了其中的套校服.如果將其中只有人選中的校服稱作“不受歡迎校服”,人選中的校服稱作“頗受歡迎校服”,人都選中的校服稱作“最受歡迎校服”,則“不受歡迎校服”比“最受歡迎校服”多________________套.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,D為AB上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連結(jié)CD,BE,
(1)當(dāng)點D是AB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由
(2)在(1)的條件下,當(dāng)∠A= 時四邊形BECD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都非常熟悉,圖中的線段OD 和折線 OABC 表示“龜兔賽跑”時的路程與時間關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題:
(1)折線 OABC 表示賽跑過程中_______的路程與時間的關(guān)系, 線段 OD 表示賽跑過程中_______的路程與時間的關(guān)系, 賽跑的全程是________米.
(2)兔子在起初每分鐘跑多少米,烏龜用多少分鐘追上了正在睡覺的兔子.
(3)兔子醒來,以 48 千米/小時的速度跑向終點,結(jié)果還是比烏龜晚到 0.5 分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年6月6日,工信部正式向四家電信企業(yè)發(fā)放商用牌照,標(biāo)志著元年開始華為公司作為行業(yè)的領(lǐng)軍者,已經(jīng)具備從芯片、產(chǎn)品到系統(tǒng)組網(wǎng)的世界領(lǐng)先的技術(shù),是全球唯一一家能夠提供端到端商用解決方案的通訊企業(yè)為了了解某中學(xué)生對通訊技術(shù)的了解情況,隨機抽取部分學(xué)生進行問卷,將結(jié)果分成“非常了解”“比較了解”、“一般了解”、“不了解”四種類型,分別記為,根據(jù)調(diào)查結(jié)果給制了如下尚不完整的兩個統(tǒng)計圖
(1)本次問卷共隨機調(diào)查了 名學(xué)生,在扇形統(tǒng)計圖中_ _,“”所在扇形的圓心角的度數(shù)為 度;
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖;
(3)若該校有名學(xué)生,估計選擇“非常了解”、“比較了解”的學(xué)生共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP(備注:當(dāng)EF=FP,∠EFP=90°時,∠PEF=∠FPE=45°,反之當(dāng)∠PEF=∠FPE=45°時,當(dāng)EF=FP).
(1)在圖1中,請你通過觀察、測量、猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連接AP,BQ.猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;
(3)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ.你認為(2)中所猜想的BQ與AP的結(jié)論還成立嗎?若成立,給出證明:若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+mx+n的圖象經(jīng)過A(0,3),且對稱軸是直線x=2.
(1)求該函數(shù)的解析式;
(2)在拋物線上找一點P,使△PBC的面積是△ABC的面積的,求出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com