【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一點(diǎn)(不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)AB=_____;
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù).
(3)若△ACD與△BCO相似,求AC的長(zhǎng).
【答案】(1)2;(2)100°;(3).
【解析】試題分析:(1)過(guò)點(diǎn)O作OE⊥AB于E,由垂徑定理即可求得AB的長(zhǎng);
(2)連接OA,由OA=OB,OA=OD,可得∠BAO=∠B,∠DAO=∠D,則可求得∠DAB的度數(shù),又由圓周角等于同弧所對(duì)圓心角的一半,即可求得∠DOB的度數(shù);
(3)由∠BCO=∠A+∠D,可得要使△ACD與△BCO相似,只能∠DCA=∠BCO=90°,然后由相似三角形的性質(zhì)即可求得答案.
試題解析:解:(1)過(guò)點(diǎn)O作OE⊥AB于E,則AE=BE=AB,∠OEB=90°.∵OB=2,∠B=30°,∴BE=OBcos∠B=2×=,∴AB=.故答案為: .
(2)連接OA.∵OA=OB,OA= OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°;
(3)∵∠BCO=∠A+∠D,∴∠BCO>∠A,∠BCO>∠D,∴要使△ACD與△BCO相似,只能∠DCA=∠BCO=90°,此時(shí)∠BOC=60°,∠BOD=120°,∴∠DAC=60°,∴△DAC∽△BOC.∵∠BCO=90°,即OC⊥AB,∴AC= AB=,∴若△ACD與△BCO相似,AC的長(zhǎng)度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(a,y1)(a+2,y2)都在反比例函數(shù)y=(k<0)的圖象上,若y1>y2,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為拓展學(xué)生視野,促進(jìn)書(shū)本知識(shí)與生活實(shí)踐的深度融合,荊州市某中學(xué)組織八年級(jí)全體學(xué)生前往松滋洈水研學(xué)基地開(kāi)展研學(xué)活動(dòng).在此次活動(dòng)中,若每位老師帶隊(duì)14名學(xué)生,則還剩10名學(xué)生沒(méi)老師帶;若每位老師帶隊(duì)15名學(xué)生,就有一位老師少帶6名學(xué)生,現(xiàn)有甲、乙兩種大型客車,它們的載客量和租金如表所示:
甲型客車 | 乙型客車 | |
載客量(人/輛) | 35 | 30 |
租金(元/輛) | 400 | 320 |
學(xué)校計(jì)劃此次研學(xué)活動(dòng)的租金總費(fèi)用不超過(guò)3000元,為安全起見(jiàn),每輛客車上至少要有2名老師.
(1)參加此次研學(xué)活動(dòng)的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛車上至少要有2名老師,可知租車總輛數(shù)為 輛;
(3)學(xué)校共有幾種租車方案?最少租車費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小芳去商店購(gòu)買甲、乙兩種商品. 現(xiàn)有如下信息:
信息1:甲、乙兩種商品的進(jìn)貨單價(jià)之和是5元,按零售單價(jià)購(gòu)買甲商品3件和乙商品2件,共付了19元;
信息2:甲商品零售單價(jià)比甲進(jìn)貨單價(jià)多1元,乙商品零售單價(jià)比乙進(jìn)貨單價(jià)的2倍少1元.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)甲、乙兩種商品的進(jìn)貨單價(jià)各多少元?
(2)若小芳準(zhǔn)備用不超過(guò)400元錢購(gòu)買100件甲、乙兩種商品,其中甲種商品至少購(gòu)買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為(3a+b)米、寬為(2a+b)米的長(zhǎng)方形地塊,中間是邊長(zhǎng)為(a+b)米的正方形,規(guī)劃部門計(jì)劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化.
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當(dāng)a=10,b=12時(shí)的綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,則DE的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是按規(guī)律排列的一組圖形的前三個(gè),觀察圖形,并在空白處填空
(1)第五個(gè)圖形中,一共有_______個(gè)點(diǎn)
(2)請(qǐng)用n的代數(shù)式表示出第n個(gè)圖形中點(diǎn)的數(shù)量__________
(3)第100個(gè)圖形中一共有_______個(gè)點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b(其中a、b、m、n均為整數(shù)),
則有:a+b,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b,用含m、n的式子分別表示a、b得:a= ,b= ;
(2)利用所探索的結(jié)論,用完全平方式表示出:7+4= .
(3)請(qǐng)化簡(jiǎn):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個(gè),若從中任意摸出一個(gè)球是白球的概率是.
(1)求暗箱中紅球的個(gè)數(shù);
(2)先從暗箱中任意摸出一個(gè)球記下顏色后放回,再?gòu)陌迪渲腥我饷鲆粋(gè)球,求兩次摸到的球顏色不同的概率(用樹(shù)形圖或列表法求解).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com