精英家教網(wǎng)如圖,平行四邊形ABCD中,AC與BD交于O,如果AC⊥AB,AC=6cm,AB=4cm,則BD=
 
cm.
分析:首先根據(jù)平行四邊形的性質(zhì)可得到AO=
1
2
AC,BO=DO=
1
2
DB,再利用勾股定理BO=
AO2+AB2
求出BO,進(jìn)而可得到答案.
解答:解:∵四邊形ABCD是平行四邊形,
∴AO=CO=
1
2
AC=3cm,BO=DO=
1
2
DB,
∵AC⊥AB,
∴∠BAO=90°,
∴BO=
AO2+AB2
=
9+16
=5(cm),
∴BD=2BO=10cm,
故答案為:10.
點(diǎn)評(píng):此題主要考查了平行四邊形的性質(zhì)和勾股定理,解題的關(guān)鍵是根據(jù)勾股定理BO2=A02+AB2,求出BO.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過(guò)D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長(zhǎng)是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫(huà)出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫(huà)圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長(zhǎng)為
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案