【題目】下列命題正確的是( 。

A.概率是1%的事件在一次試驗中一定不會發(fā)生

B.要了解某公司生產(chǎn)的100萬只燈泡的使用壽命,可以采用全面調(diào)查的方式

C.甲乙兩人各自跳遠(yuǎn)10次,若他們跳遠(yuǎn)成績的平均數(shù)相同,甲乙跳遠(yuǎn)成績的方差分別為0.510.62,則乙的成績更穩(wěn)定

D.隨意翻到一本書的某頁,頁碼是奇數(shù)是隨機(jī)事件

【答案】D

【解析】

根據(jù)隨機(jī)事件、方差、普查和抽樣調(diào)查等知識逐個判斷即可.

解:概率為的事件再一次試驗中也可能發(fā)生,只是可能性很小,因此選項不符合題意;

100萬只燈泡采取全面調(diào)查,一是沒有必要,二是破壞性較強(qiáng),不容易完成,因此選項不符合題意;

方差小的穩(wěn)定,因此選項不符合題意;

隨意翻到一本數(shù)的某頁,頁碼可能是奇數(shù)、也可能是偶數(shù),因此選項符合題意;

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形,,,,動點從點開始沿邊勻速運動,運動速度為,動點從點開始沿邊勻速運動,運動速度為.點和點同時出發(fā),為四邊形的對角線的交點,連接并延長交,連接.設(shè)運動的時間為,

1)當(dāng)為何值時,?

2)設(shè)五邊形的面積為,求之間的函數(shù)關(guān)系式;

3)在運動過程中,是否存在某一時刻,使的面積等于五邊形面積的?若存在,求出的值;若不存在,請說明理由;

4)在運動過程中,是否存在某一時刻,使點的垂直平分線上?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水果店主分兩批購進(jìn)同一種水果,第一批所用資金為2400元,因天氣原因,水果漲價,第二批所用資金是2700元,但由于第二批單價比第一批單價每箱多10元,以致購買的數(shù)量比第一批少25%

1)該水果店主購進(jìn)第一批這種水果每箱的單價是多少元?

2)該水果店主計劃兩批水果的售價均定為每千克4元,每箱10千克,實際銷售時按計劃無損耗售完第一批后,發(fā)現(xiàn)第二批水果品質(zhì)不如第一批,于是該店主將售價下降a%銷售,結(jié)果還是出現(xiàn)了2%的損耗,但這兩批水果銷售完后仍賺了不低于2346元,求a的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從青島到濟(jì)南有南線和北線兩條高速公路:南線全長400千米,北線全長320千米.甲、乙兩輛客車分別由南線和北線從青島駛往濟(jì)南,已知客車甲在南線高速公路上行駛的平均速度比客車乙在北線高速公路上快20千米/小時,兩車恰好同時到達(dá)濟(jì)南,求兩輛客車從青島到濟(jì)南所用的時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,4),B(3,4),P 為線段 OA 上一動點,過 O,PB 三點的圓交 x 軸正半軸于點 C,連結(jié) AB, PCBC,設(shè) OP=m.

(1)求證:當(dāng) P A 重合時,四邊形 POCB 是矩形.

(2)連結(jié) PB,求 tanBPC 的值.

(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.

(4)作點 O 關(guān)于 PC 的對稱點O ,在點 P 的整個運動過程中,當(dāng)點O 落在APB 的內(nèi)部 (含邊界)時,請寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中.

(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);

(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=kx+b與反比例函數(shù)y2=n0)交于點A1,3),B3m).

1)分別求兩個函數(shù)的解析式;

2)根據(jù)圖像直接寫出,當(dāng)x為何值時,y1y2

3)在x軸上找一點P,使得OAP的面積為6,求出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC1,tanCAB2,將ABC繞點A旋轉(zhuǎn)后,點B落在AC的延長線上的點D,點C落在點E,DE與直線BC相交于點F,那么CF_____

查看答案和解析>>

同步練習(xí)冊答案