【題目】四川雅安發(fā)生地震后,某校學生會向全校1900名學生發(fā)起了“心系雅安”捐款活動,為了解捐款情況,學會生隨機調查了部分學生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖和圖,請根據(jù)相關信息,解答下列是問題:

(1)本次接受隨機抽樣調查的學生人數(shù)為    ,圖中m的值是    ;

(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學生人數(shù).

【答案】解:(1)50; 32。

(2),

這組數(shù)據(jù)的平均數(shù)為:16。

在這組樣本數(shù)據(jù)中,10出現(xiàn)次數(shù)最多為16次,

這組數(shù)據(jù)的眾數(shù)為:10。

將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是15,

這組數(shù)據(jù)的中位數(shù)為:,

(3)在50名學生中,捐款金額為10元的學生人數(shù)比例為32%,

由樣本數(shù)據(jù),估計該校1900名學生中捐款金額為10元的學生人數(shù)有1900×32%=608(人。

該校本次活動捐款金額為10元的學生約有608人。

【解析】

試題(1)根據(jù)條形統(tǒng)計圖即可得出樣本容量:4+16+12+10+8=50(人);

根據(jù)扇形統(tǒng)計圖得出m的值。

(2)利用平均數(shù)、中位數(shù)、眾數(shù)的定義分別求出即可

(3)根據(jù)樣本中捐款10元的百分比,而得出該校本次活動捐款金額為10元的學生人數(shù)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6BC=8

1)用直尺和圓規(guī)作∠A的平分線,交BC于點D;(要求:不寫作法,保留作圖痕跡)

2SADCSADB .(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你能求(x1)(x99+x98+x97++x+1)的值嗎?遇到這樣的問題,我們可以先思考一下,從簡單的情形入手.先分別計算下列各式的值.

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

……

由此我們可以得到:(x1)(x99+x98+x97++x+1)=   

請你利用上面的結論,再完成下面兩題的計算:

1)(﹣250+(﹣249+(﹣248++(﹣2+1

2)若x3+x2+x+10,求x2019的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:E在△ABCAC邊的延長線上,D點在AB邊上,DEBC于點F,DF=EF,BD=CE.求證:△ABC是等腰三角形(過DDG∥ACBCG)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC三條邊的長度分別是,,記△ABC的周長為CABC

1)當x2時,△ABC的最長邊的長度是   (請直接寫出答案);

2)請求出CABC(用含x的代數(shù)式表示,結果要求化簡);

3)我國南宋時期數(shù)學家秦九韶曾提出利用三角形的三邊長求面積的秦九韶公式:S.其中三角形邊長分別為a,b,c,三角形的面積為S

x為整數(shù),當CABC取得最大值時,請用秦九韶公式求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:為了測量某棵樹的高度,小剛用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點,此時,竹竿與這一點距離6m,與樹相距15m,那么這棵的高度為( )

A.5米
B.7米
C.7.5米
D.21米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習相似三角形和解直角三角形的相關內容后,張老師請同學們交流這樣的一個問題:“如上圖,在正方形網(wǎng)格上有△A1B1C1和△A2B2C2 , 這兩個三角形是否相似?”,那么你認為△A1B1C1和△A2B2C2 , (相似或不相似);理由是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,無論k取何實數(shù),直線y=(k-1)x+4-5k總經過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______

查看答案和解析>>

同步練習冊答案