【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)A、C的坐標(biāo)分別為(-1,0),(0,-3),直線x=1為拋物線的對稱軸.點(diǎn)D為拋物線的頂點(diǎn),直線BC與對稱軸相較于點(diǎn)E.
(1)求拋物線的解析式并直接寫出點(diǎn)D的坐標(biāo);
(2)點(diǎn)P為直線x=1右方拋物線上的一點(diǎn)(點(diǎn)P不與點(diǎn)B重合).記A、B、C、P四點(diǎn)所構(gòu)成的四邊形面積為S,若S=S△BCD,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是線段BD上的動點(diǎn),將△DEQ延邊EQ翻折得到△D′EQ,是否存在點(diǎn)Q使得△D′EQ與△BEQ的重疊部分圖形為直角三角形?若存在,請求出BQ的長,若不存在,請說明理由.
【答案】(1)y=x2-2x-3,頂點(diǎn)D的坐標(biāo)為(1,-4);(2)P點(diǎn)坐標(biāo)為(,)或(,);(3)存在,或1或-,
【解析】
試題分析:(1)利用拋物線的對稱性得到B(3,0),則設(shè)交點(diǎn)式為y=a(x+1)(x-3),把C(0,-3)代入求出a即可得到拋物線解析式,然后把解析式配成頂點(diǎn)式即可得到D點(diǎn)坐標(biāo);
(2)設(shè)P(m,m2-2m-3),先確定直線BC的解析式y(tǒng)=x-3,再確定E(1,-2),則可根據(jù)三角形面積公式計算出S△BDC=S△BDE+S△CDE=3,然后分類討論:當(dāng)點(diǎn)P在x軸上方時,即m>3,如圖1,利用S=S△PAB+S△CAB=S△BCD得到2m2-4m=;當(dāng)點(diǎn)P在x軸下方時,即1<m<3,如圖2,連結(jié)OP,利用S=S△AOC+S△COP+S△POB=S△BCD得到-m2+m+6=,再分別解關(guān)于m的一元二次方程求出m,從而得到P點(diǎn)坐標(biāo);
(3)存在.直線x=1交x軸于F,利用兩點(diǎn)間的距離公式計算出BD=2,分類討論:①如圖3,EQ⊥DB于Q,證明Rt△DEQ∽Rt△DBF,利用相似比可計算出DQ=,則BQ=BD-DQ=;②如圖4,ED′⊥BD于H,證明Rt△DEQ=H∽Rt△DBF,利用相似比計算出DH=,EH=,在Rt△QHD′中,設(shè)QH=x,D′Q=DQ=DH-HQ=-x,D′H=D′E-EH=DE-EH=2-,則利用勾股定理可得x2+(2-)2=(-x)2,解得x=1-,于是BQ=BD-DH+HQ-=+1;③如圖5,D′Q⊥BC于G,作EI⊥BD于I,利用①得結(jié)論可得EI=,BI=,而BE=2,則BG=BE-EG=2-,根據(jù)折疊性質(zhì)得∠EQD=∠EQD′,則根據(jù)角平分線性質(zhì)得EG=EI=,接著證明△BQG∽△BEI,利用相似比可得BQ=-,所以當(dāng)BQ為或+1或-時,將△DEQ沿邊EQ翻折得到△D′EQ,使得△D′EQ與△BEQ的重疊部分圖形為直角三角形.
試題解析:(1)∵點(diǎn)A與點(diǎn)B關(guān)于直線x=1對稱,
∴B(3,0),
設(shè)拋物線解析式為y=a(x+1)(x-3),
把C(0,-3)代入得-3a=-3,解得a=1,
∴拋物線就笑著說為y=(x+1)(x-3)=x2-2x-3,
∵y=(x-1)2-4,
∴拋物線頂點(diǎn)D的坐標(biāo)為(1,-4);
(2)設(shè)P(m,m2-2m-3),易得直線BC的解析式為y=x-3,
當(dāng)x=1時,y=x-3=-3,則E(1,-2),
∴S△BDC=S△BDE+S△CDE=×3×(-2+4)=3,
當(dāng)點(diǎn)P在x軸上方時,即m>3,如圖1,
S=S△PAB+S△CAB=3(3+1)+(3+1)(m2-2m-3)=2m2-4m,
∵S=S△BCD,
∴2m2-4m=,
整理得4m2-8m-15=0,解得m1=,m2=(舍去),
∴P點(diǎn)坐標(biāo)為(,);
當(dāng)點(diǎn)P在x軸下方時,即1<m<3,如圖2,連結(jié)OP,
S=S△AOC+S△COP+S△POB=31+3m+3(-m2+2m+3)=-m2+m+6,
∵S=S△BCD,
∴-m2+m+6=,
整理得m2-3m+1=0,解得m1=,m2=(舍去)
∴P點(diǎn)坐標(biāo)為(,),
綜上所述,P點(diǎn)坐標(biāo)為(,)或(,);
(3)存在.直線x=1交x軸于F,BD=,
①如圖3,EQ⊥DB于Q,△DEQ沿邊EQ翻折得到△D′EQ,
∵∠EDQ=∠BDF,
∴Rt△DEQ∽Rt△DBF,
∴,即,解得DQ=,
∴BQ=BD-DQ=2-=;
②如圖4,ED′⊥BD于H,
∵∠EDH=∠BDF,
∴Rt△DEQ=H∽Rt△DBF,
∴,即,解得DH=,EH=,
在Rt△QHD′中,設(shè)QH=x,D′Q=DQ=DH-HQ=-x,D′H=D′E-EH=DE-EH=2-,
∴x2+(2-)2=(-x)2,解得x=1-,
∴BQ=BD-DQ=BD-(DH-HQ)=BD-DH+HQ=2-+1-=+1;
③如圖5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,
∵BE=,
∴BG=BE-EG=2-,
∵△DEQ沿邊EQ翻折得到△D′EQ,
∴∠EQD=∠EQD′,
∴EG=EI=,
∵∠GBQ=∠IBE,
∴△BQG∽△BEI,
∴,即
∴BQ=-,
綜上所述,當(dāng)BQ為或1或-,將△DEQ沿邊EQ翻折得到△D′EQ,使得△D′EQ與△BEQ的重疊部分圖形為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)2(x2-2x+5)-3(2x2-5)=________________.
(2)4(m-3n)-5(3n-10m)-13(n-2m)=_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多項(xiàng)式加上5x2﹣4x﹣3得﹣x2﹣3x,則這個多項(xiàng)式為( )
A. 4x2﹣7x﹣3 B. 6x2﹣x﹣3 C. ﹣6x2+x+3 D. ﹣6x2﹣7x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冰箱冷凍室的溫度為-6 ℃,此時房間內(nèi)的溫度為20 ℃,則房間內(nèi)的溫度比冰箱冷凍室的溫度高( )
A. 26 ℃ B. 14 ℃ C. -26 ℃ D. -14 ℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于點(diǎn)A(-1,0),B(3,0)兩點(diǎn),過點(diǎn)A的直線交拋物線于點(diǎn)C(2,m),交y軸于點(diǎn)D.
(1)求拋物線及直線AC的解析式;
(2)點(diǎn)P是線段AC上的一動點(diǎn)(點(diǎn)P與點(diǎn)A、C不重合),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E,求線段PE長度的最大值;
(3)點(diǎn)M(m,-3)是拋物線上一點(diǎn),問在直線AC上是否存在點(diǎn)F,使△CMF是等腰直角三角形?如果存在,請求出點(diǎn)F的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com