【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C

1)求證:PB是⊙O的切線;

2)連接OP,若OPBC,且OP4,⊙O的半徑為,求BC的長.

【答案】(1)證明見解析;(2)BC=1;

【解析】

1)連接OB,由圓周角定理得出∠ABC90°,得出∠C∠BAC90°,再由OAOB,得出∠BAC∠OBA,證出∠PBA∠OBA90°,即可得出結(jié)論;

2)證明△ABC∽△PBO,得出對應(yīng)邊成比例,即可求出BC的長.

1)連接OB,如圖所示:

ACO的直徑,

∴∠ABC90°,

∴∠CBO+∠OBA90°,

OCOB,

∴∠CCBO,

∴∠C+∠OBA90°,

∵∠PBAC,

∴∠PBA+∠OBA90°,

PBOB,

PBO的切線;

2∵⊙O的半徑為,

OB,AC2,

OPBC

∴∠CCBOBOP,

∵∠ABCPBO90°,

∴△ABC∽△PBO,

,

,

BC1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtOAB,∠OAB90°,∠ABO30°,斜邊OB4,將RtOAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°,連接BC

1)如圖1,連接AC,作OPAC,垂足為P,求△AOC的面積和線段OP的長;

2)如圖2,點(diǎn)M是線段OC的中點(diǎn),點(diǎn)N是線段OB上的動(dòng)點(diǎn)(不與點(diǎn)O重合),求△CMN周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數(shù)關(guān)系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們將圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖所示,直線lykx+4x軸、y軸分別交于A、B,∠OAB30°,點(diǎn)Px軸上,Pl相切,當(dāng)P在線段OA上運(yùn)動(dòng)時(shí),使得P成為“整圓”的點(diǎn)P個(gè)數(shù)是_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點(diǎn)AP是弧AB上的一個(gè)動(dòng)點(diǎn).

(1)求半徑OB的長;

(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延長BP、CA交于點(diǎn)D,求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)草莓采摘園為吸引顧客,在草莓銷售價(jià)格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購買門票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門票,采摘草莓超過一定數(shù)量后,超過的部分打折銷售.活動(dòng)期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費(fèi)用y1元,若在乙園采摘需總費(fèi)用y2元, y1,y2x之間的函數(shù)圖象如圖所示,則下列說法中錯(cuò)誤的是(

A.甲園的門票費(fèi)用是60

B.草莓優(yōu)惠前的銷售價(jià)格是40/kg

C.乙園超過5 kg后,超過的部分價(jià)格優(yōu)惠是打五折

D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費(fèi)用相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個(gè)公共點(diǎn).

1)求b的取值范圍;

2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時(shí),函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;

3)若在自變量x的值滿足b≤x≤b+3的情況下,對應(yīng)函數(shù)y的最小值為,求此時(shí)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于、,交軸于點(diǎn)

1)拋物線頂點(diǎn)的坐標(biāo)為________;

2)如圖2,連接、.將沿軸方向以每秒1個(gè)單位長度的速度向右平移得到,運(yùn)動(dòng)時(shí)間為秒.當(dāng)時(shí),求重疊面積的函數(shù)解析式,并求出的最大值;

3)如圖3中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到,邊與拋物線的對稱軸交于點(diǎn).在旋轉(zhuǎn)過程中,是否存在一點(diǎn),使得?若存在,直接寫出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)AAHBC,分別交BD,BC于點(diǎn)E,H,FED的中點(diǎn),∠BAF120°,則∠C的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案