(2013•溫州)如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長(zhǎng).
分析:(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;
(2)首先設(shè)BC=x,則AC=x-2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x-2)2+x2=42,解此方程即可求得CB的長(zhǎng),繼而求得CE的長(zhǎng).
解答:(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∴AC⊥BC,
又∵DC=CB,
∴AD=AB,
∴∠B=∠D;

(2)解:設(shè)BC=x,則AC=x-2,
在Rt△ABC中,AC2+BC2=AB2
∴(x-2)2+x2=42,
解得:x1=1+
7
,x2=1-
7
(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=1+
7
點(diǎn)評(píng):此題考查了圓周角定理、線段垂直平分線的性質(zhì)、等腰三角形的判定與性質(zhì)以及勾股定理等知識(shí).此題難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州)如圖,在方格紙中,△ABC的三個(gè)頂點(diǎn)和點(diǎn)P都在小方格的頂點(diǎn)上,按要求畫一個(gè)三角形,使它的頂點(diǎn)在方格的頂點(diǎn)上.
(1)將△ABC平移,使點(diǎn)P落在平移后的三角形內(nèi)部,在圖甲中畫出示意圖;
(2)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn),使點(diǎn)P落在旋轉(zhuǎn)后的三角形內(nèi)部,在圖乙中畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州)如圖,在⊙O中,OC⊥弦AB于點(diǎn)C,AB=4,OC=1,則OB的長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州)如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,DE∥BC,已知AE=6,
AD
BD
=
3
4
,則EC的長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州)如圖,在平面直角坐標(biāo)系中,△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(-1,0),BC⊥x軸,將△ABC以y軸為對(duì)稱軸作軸對(duì)稱變換,得到△A′B′C′(A和A′,B和B′,C和C′分別是對(duì)應(yīng)頂點(diǎn)),直線y=x+b經(jīng)過(guò)點(diǎn)A,C′,則點(diǎn)C′的坐標(biāo)是
(1,3)
(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溫州)如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(6,0),B(0,8),點(diǎn)C的坐標(biāo)為(0,m),過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上的一動(dòng)點(diǎn),連接CD,DE,以CD,DE為邊作?CDEF.
(1)當(dāng)0<m<8時(shí),求CE的長(zhǎng)(用含m的代數(shù)式表示);
(2)當(dāng)m=3時(shí),是否存在點(diǎn)D,使?CDEF的頂點(diǎn)F恰好落在y軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)D在整個(gè)運(yùn)動(dòng)過(guò)程中,若存在唯一的位置,使得?CDEF為矩形,請(qǐng)求出所有滿足條件的m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案