【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MNBN,若以AMMNBN為邊的三角形是一個(gè)直角三角形,則稱(chēng)點(diǎn)M,N是線段AB的勾股分割點(diǎn).

請(qǐng)解決下列問(wèn)題:

(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),且BN>MN>AM.若AM=2,MN=3,求BN的長(zhǎng);

(2)如圖2,若點(diǎn)F、M、N、G分別是AB、AD、AEAC邊上的中點(diǎn),點(diǎn)DE是線段BC的勾股分割點(diǎn),且EC>DE>BD,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn).

【答案】(1)(2)證明見(jiàn)解析.

【解析】試題分析:1①當(dāng)MN為最大線段時(shí),由勾股定理求出BN;②當(dāng)BN為最大線段時(shí),由勾股定理求出BN即可;

2先證出點(diǎn)M、N分別是ADAE的中點(diǎn),得出BD=2FMDE=2MN,EC=2NG,求出EC2=BD2+DE2,得出NG2=FM2+MN2,即可得出結(jié)論

試題解析:(1)∵點(diǎn)M,N是線段AB的勾股分割點(diǎn),且BN>MN>AM, AM=2,MN=3

BN=

(2)證明 ∵點(diǎn)FM、N、G分別是AB、AD、AEAC邊上的中點(diǎn)

FM、MN、NG分別是ABDADE、AEC的中位線

BD=2FM,DE=2MN,EC=2NG

∵點(diǎn)DE是線段BC的勾股分割點(diǎn),且EC>DE>BD

∴點(diǎn)M,N是線段FG的勾股分割點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=1是關(guān)于x的一元二次方程(m﹣1)x2+x+1=0的一個(gè)根,則m的值是(  )

A. 1 B. ﹣1 C. 0 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=BD;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下問(wèn)題,不適合用普查的是( )

A. 了解全班同學(xué)每周閱讀的時(shí)間B. 亞航客機(jī)飛行前的安全檢測(cè)

C. 了解全市中小學(xué)生每天的零花錢(qián)D. 某企業(yè)招聘部門(mén)經(jīng)理,對(duì)應(yīng)聘人員面試

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省2014年的快遞業(yè)務(wù)量為1.4億件,受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展, 2016年的快遞業(yè)務(wù)量達(dá)到4.5億件.設(shè)2015年與2016年這兩年的平均增長(zhǎng)率為x則下列方程正確的是( 。

A. 1.41+x=4.5 B. 1.41+2x=4.5

C. 1.41+x2=4.5 D. 1.41+x+1.41+x2=4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下調(diào)查中適合做普查的是( )

A. 值日老師調(diào)查各班學(xué)生的出勤情況 B. 調(diào)查長(zhǎng)江水的污染情況

C. 調(diào)查某種鋼筆的使用情況 D. 中央電視臺(tái)調(diào)查某節(jié)目的收視率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】40個(gè)數(shù)據(jù),其中最大值為35,最小值為14,若取組距為4,則應(yīng)該分的組數(shù)是(  )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個(gè)單位長(zhǎng)度后再向上平移8個(gè)單位長(zhǎng)度,得到二次函數(shù)圖象N.

(1)求N的函數(shù)表達(dá)式;

(2)設(shè)點(diǎn)P(m,n)是以點(diǎn)C(1,4)為圓心、1為半徑的圓上一動(dòng)點(diǎn),二次函數(shù)的圖象M與x軸相交于兩點(diǎn)A、B,求的最大值;

(3)若一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱(chēng)為整點(diǎn).求M與N所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案