【題目】RtABC中,∠C=90°,PBC邊上不同于B、C的一動(dòng)點(diǎn),過PPQAB,垂足為Q,連接AP

1)試說明不論點(diǎn)PBC邊上何處時(shí),都有△PBQ與△ABC相似;

2)若RtAQPRtACPRtBQP,求tanB的值;

3)已知AC=3,BC=4,當(dāng)BP為何值時(shí),△AQP面積最大,并求出最大值.

【答案】1證明見解析;2; 3當(dāng)BP=時(shí),△APQ的面積最大,最大值是

【解析】試題分析(1)直接證明∠C=∠PQB=90°,而∠B=∠B,即可根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似;

(2)分別根據(jù)全等三角形的性質(zhì),求出AQ=QB=AC,然后根據(jù)銳角三角形函數(shù)的性質(zhì)求出tanB的值;

3)利用勾股定理求出AB的值,然后根據(jù)相似三角形的性質(zhì)列出比例式求出PQ、BQ,再根據(jù)三角形的面積公式求出△AQP面積,根據(jù)二次函數(shù)的性質(zhì)和配方法解答即可

試題解析:1不論點(diǎn)PBC邊上何處時(shí),都有

PQB=C=90°,B=B

∴△PBQ∽△ABC

2RtAQPRtACPAQ=AC

RtAQPRtBQP AQ=QB

AQ=QB=AC

∴∠B=

3)設(shè)BP=x0x4),由勾股定理,得 AB=5

∵由(1)知,△PBQ∽△ABC,

,即

SAPQ===

∴當(dāng)時(shí),△APQ的面積最大,最大值是;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是四邊形ABCD的對(duì)角線BD上一點(diǎn),且∠BACBDCDAE.

①試說明BE·ADCD·AE;

②根據(jù)圖形特點(diǎn),猜想可能等于哪兩條線段的比?并證明你的猜想,(只須寫出有線段的一組即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,我國(guó)國(guó)民經(jīng)濟(jì)保持良好發(fā)展勢(shì)頭,國(guó)內(nèi)生產(chǎn)總值持續(xù)較快增長(zhǎng), 下圖是19982002年國(guó)內(nèi)生產(chǎn)總值統(tǒng)計(jì)圖.

1從圖中可看出1999年國(guó)內(nèi)生產(chǎn)總值是___________.

2已知2002年國(guó)內(nèi)生產(chǎn)總值比2000年增加12956億元2001年比2000年增加6491億元,2002年國(guó)內(nèi)生產(chǎn)總值比2001年增長(zhǎng)的百分率(結(jié)果保留兩個(gè)有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的65日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購(gòu)買12臺(tái)節(jié)能新設(shè)備,現(xiàn)有甲乙兩種型號(hào)的設(shè)備可供選購(gòu),經(jīng)調(diào)查,購(gòu)4臺(tái)甲比購(gòu)3臺(tái)乙多用18萬元,購(gòu)3臺(tái)甲比購(gòu)4臺(tái)乙少用4萬元。

1)求甲乙兩種設(shè)備的單價(jià)。

2)該公司決定購(gòu)買甲設(shè)備不少于5臺(tái),購(gòu)買資金不超過136萬元,你認(rèn)為該公司有幾種購(gòu)買方案?并直接寫出最省錢的購(gòu)買方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD和△ACE中,AB=ADAC=AE,BAD=CAE,連接BC、DE相交于點(diǎn)F,BCAD相交于點(diǎn)G

1)試判斷線段BC、DE的數(shù)量關(guān)系,并說明理由;

2)若BC平分∠ABD,求證線段FD是線段FG FB的比例中項(xiàng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解:如圖1,在中,若.求邊上的中線的取值范圍.小聰同學(xué)是這樣思考的:延長(zhǎng),使,連結(jié).利用全等將邊轉(zhuǎn)化到,在中利用三角形三邊關(guān)系即可求出中線的取值范圍.在這個(gè)過程中小聰同學(xué)證三角形全等用到的判定方法是__________;中線的取值范圍是__________.

2)問題解決:如圖2,在中,點(diǎn)的中點(diǎn),點(diǎn)邊上,點(diǎn)邊上,若.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,延長(zhǎng)BA至點(diǎn)E,使AE=AB,連接CE、DE、AC,CEAD交于點(diǎn)F

1)求證:四邊形ACDE是平行四邊形;

2)若AFC=2∠B.求證:四邊形ACDE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形 ABC (頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn) A C 的坐標(biāo)分別是(-4 ,6) ,(-1,4)

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出△ABC 關(guān)于 x 軸對(duì)稱的△A1B1C1 ;并直接寫出A1B1C1的坐標(biāo).

(3)請(qǐng)?jiān)?/span> y 軸上求作一點(diǎn) P ,使△PB1C 的周長(zhǎng)最小,

查看答案和解析>>

同步練習(xí)冊(cè)答案