【題目】已知拋物線,其中,直線l是它的對稱軸,把該拋物線沿著x軸水平向左平移個單位長度后,與x軸交于點(diǎn)A、B,在B的左側(cè),如圖1,P為平移后的拋物線上位于第一象限內(nèi)的一點(diǎn)
點(diǎn)A的坐標(biāo)為______;
若點(diǎn)P的橫坐標(biāo)為,求出當(dāng)m為何值時的面積最大,并求出這個最大值;
如圖2,AP交l于點(diǎn)D,當(dāng)D為AP的中點(diǎn)時,求證:.
【答案】(1);(2);;
【解析】
(1)設(shè)y=0,可求平移前拋物線與x軸的交點(diǎn)坐標(biāo),即可求平移后點(diǎn)A坐標(biāo);
(2)由題意可求平移后拋物線解析式,即可求點(diǎn)P坐標(biāo),由三角形面積公式可求S△ABP(m+1)(4﹣m)(m)2,由二次函數(shù)的性質(zhì)可求解;
(3)過點(diǎn)D作DM⊥AB于M,過點(diǎn)P作PN⊥AB于點(diǎn)N,由題意可求點(diǎn)N坐標(biāo),即可求AN=PN=m+6,可證∠PAB=45°.
(1)設(shè)y=0,則0(x+1)(x﹣m),∴x1=﹣1,x2=m,∴拋物線y(x+1)(x﹣m)與x軸交點(diǎn)坐標(biāo)(﹣1,0),(m,0)
∵該拋物線沿著x軸水平向左平移個單位長度后,與x軸交于點(diǎn)A、B,∴點(diǎn)A(,0)
故答案為:(,0).
(2)∵平移后解析式為:y(x+1)(x﹣m(x)(x﹣m),∴當(dāng)x時,y=4﹣m,∴S△ABP(m+1)(4﹣m)(m)2
∴當(dāng)m時,△ABP的面積最大值為;
(3)如圖,過點(diǎn)D作DM⊥AB于M,過點(diǎn)P作PN⊥AB于點(diǎn)N,∴DM∥PN,∴,且AD=DP,∴MN=AM.
∵點(diǎn)M坐標(biāo)(,0),點(diǎn)A(,0),∴點(diǎn)N(m,0),∴AN=6+m.
當(dāng)x=m,y= =m+6,∴PN=m+6=AN,∴∠PAB=45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,,為斜邊上的中點(diǎn),連接,以為直徑作⊙,分別與、交于點(diǎn)、.過點(diǎn)作⊥,垂足為點(diǎn).
(1)求證:為⊙的切線;
(2)連接,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.
(1)從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?
(2)5月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對現(xiàn)有多媒體設(shè)備進(jìn)行升級改造,已知購買3個鍵盤和1個鼠標(biāo)需要190元;購買2個鍵盤和3個鼠標(biāo)需要220元;
(1)求鍵盤和鼠標(biāo)的單價各是多少元?
(2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計劃購買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購買鍵盤多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知京潤生物制品廠生產(chǎn)某種產(chǎn)品的年產(chǎn)量不超過800噸,生產(chǎn)該產(chǎn)品每噸所需相關(guān)費(fèi)為10萬元,且生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完.產(chǎn)品每噸售價y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系如圖所示
(1)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時,當(dāng)年可獲得7500萬元毛利潤?(毛利潤=銷售額﹣相關(guān)費(fèi)用)
(2)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時,該廠能獲得當(dāng)年銷售的是大毛利潤?最大毛利潤多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由我國完全自主設(shè)計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務(wù).如圖,航母由西向東航行,到達(dá)處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達(dá)B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x分別與雙曲線y=(m>0,x>0),雙曲線y=(n>0,x>0)交于點(diǎn)A和點(diǎn)B,且,將直線y=x向左平移6個單位長度后,與雙曲線y= 交于點(diǎn)C,若S△ABC=4,則的值為_____,mn的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲和乙兩位同學(xué)想測量一下廣場中央的照明燈P的高度,如圖,當(dāng)甲站在A處時,乙測得甲的影子長AD正好與他的身高AM相等,接著甲沿AC方向繼續(xù)向前走,走到點(diǎn)B處時,甲的影子剛好是線段AB,此時測得AB的長為1.2m.已知甲直立時的身高為1.8m,求照明燈的高CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點(diǎn)E,連接AD,BC,CO
(1)當(dāng)∠BCO=25°時,求∠A的度數(shù);
(2)若CD=4,BE=4,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com