【題目】已知拋物線,其中,直線l是它的對稱軸,把該拋物線沿著x軸水平向左平移個單位長度后,與x軸交于點(diǎn)A、B,B的左側(cè),如圖1P為平移后的拋物線上位于第一象限內(nèi)的一點(diǎn)

點(diǎn)A的坐標(biāo)為______;

若點(diǎn)P的橫坐標(biāo)為,求出當(dāng)m為何值時的面積最大,并求出這個最大值;

如圖2,APl于點(diǎn)D,當(dāng)DAP的中點(diǎn)時,求證:

【答案】1;(2;;

【解析】

1)設(shè)y=0,可求平移前拋物線與x軸的交點(diǎn)坐標(biāo),即可求平移后點(diǎn)A坐標(biāo);

2)由題意可求平移后拋物線解析式,即可求點(diǎn)P坐標(biāo),由三角形面積公式可求SABPm+1)(4mm2,由二次函數(shù)的性質(zhì)可求解;

3)過點(diǎn)DDMABM,過點(diǎn)PPNAB于點(diǎn)N,由題意可求點(diǎn)N坐標(biāo),即可求AN=PN=m+6,可證∠PAB=45°.

1)設(shè)y=0,則0x+1)(xm),∴x1=1,x2=m,∴拋物線yx+1)(xm)與x軸交點(diǎn)坐標(biāo)(﹣1,0),(m,0

∵該拋物線沿著x軸水平向左平移個單位長度后,與x軸交于點(diǎn)A、B,∴點(diǎn)A,0

故答案為:(,0).

2)∵平移后解析式為:yx+1)(xmx)(xm),∴當(dāng)x時,y=4m,∴SABPm+1)(4mm2

∴當(dāng)m時,△ABP的面積最大值為;

3)如圖,過點(diǎn)DDMABM,過點(diǎn)PPNAB于點(diǎn)N,∴DMPN,∴,且AD=DP,∴MN=AM

∵點(diǎn)M坐標(biāo)(,0),點(diǎn)A,0),∴點(diǎn)Nm,0),∴AN=6+m

當(dāng)x=my= =m+6,∴PN=m+6=AN,∴∠PAB=45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,為斜邊上的中點(diǎn),連接,以為直徑作⊙,分別與交于點(diǎn)、.過點(diǎn),垂足為點(diǎn).

1)求證:為⊙的切線;

2)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近期豬肉價格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場豬肉的平均價格達(dá)到一定的單價時,政府將投入儲備豬肉以平抑豬肉價格.

1從今年年初至5月20日,豬肉價格不斷走高,5月20日比年初價格上漲了60%,某市民在今年5月20日購買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價格為每千克多少元?

25月20日豬肉價格為每千克40元,5月21日,某市決定投入儲備豬肉,并規(guī)定其銷售價格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,某超市按規(guī)定價出售一批儲備豬肉,該超市在非儲備豬肉的價格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對現(xiàn)有多媒體設(shè)備進(jìn)行升級改造,已知購買3個鍵盤和1個鼠標(biāo)需要190元;購買2個鍵盤和3個鼠標(biāo)需要220元;

1)求鍵盤和鼠標(biāo)的單價各是多少元?

2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計劃購買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購買鍵盤多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知京潤生物制品廠生產(chǎn)某種產(chǎn)品的年產(chǎn)量不超過800噸,生產(chǎn)該產(chǎn)品每噸所需相關(guān)費(fèi)為10萬元,且生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完.產(chǎn)品每噸售價y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系如圖所示

1)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時,當(dāng)年可獲得7500萬元毛利潤?(毛利潤=銷售額﹣相關(guān)費(fèi)用)

2)當(dāng)該產(chǎn)品年產(chǎn)量為多少噸時,該廠能獲得當(dāng)年銷售的是大毛利潤?最大毛利潤多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由我國完全自主設(shè)計、自主建造的首艘國產(chǎn)航母于20185月成功完成第一次海上試驗任務(wù).如圖,航母由西向東航行,到達(dá)處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達(dá)B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx分別與雙曲線ym0x0),雙曲線yn0,x0)交于點(diǎn)A和點(diǎn)B,且,將直線yx向左平移6個單位長度后,與雙曲線y 交于點(diǎn)C,若SABC4,則的值為_____mn的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲和乙兩位同學(xué)想測量一下廣場中央的照明燈P的高度,如圖,當(dāng)甲站在A處時,乙測得甲的影子長AD正好與他的身高AM相等,接著甲沿AC方向繼續(xù)向前走,走到點(diǎn)B處時,甲的影子剛好是線段AB,此時測得AB的長為1.2m.已知甲直立時的身高為1.8m,求照明燈的高CP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CDAB于點(diǎn)E,連接AD,BCCO

1)當(dāng)∠BCO25°時,求∠A的度數(shù);

2)若CD4,BE4,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案