【題目】為了解某種電動汽車的性能,對這種電動汽車進行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個等級,其中相應(yīng)等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)問這次被抽檢的電動汽車共有幾輛?并補全條形統(tǒng)計圖;

(2)估計這種電動汽車一次充電后行駛的平均里程數(shù)為多少千米?

【答案】(1)100(輛),見解析(2)217千米.

【解析】

試題分析:(1)根據(jù)條形統(tǒng)計圖和扇形圖可知,將一次充電后行駛的里程數(shù)分為B等級的有30輛電動汽車,所占的百分比為30%,用30÷30%即可求出電動汽車的總量;分別計算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的電動汽車的輛數(shù),即可補全統(tǒng)計圖;

(2)用總里程除以汽車總輛數(shù),即可解答.

解:(1)這次被抽檢的電動汽車共有:30÷30%=100(輛),

C所占的百分比為:40÷100×100%=40%,D所占的百分比為:20÷100×100%=20%,

A所占的百分比為:100%﹣40%﹣20%﹣30%=10%,

A等級電動汽車的輛數(shù)為:100×10%=10(輛),

補全統(tǒng)計圖如圖所示:

(2)這種電動汽車一次充電后行駛的平均里程數(shù)為:

230)=217(千米),

估計這種電動汽車一次充電后行駛的平均里程數(shù)為217千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等式2a□a=2a2一定成立,則□內(nèi)的運算符號為(

A.+ B.﹣ C.× D.÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某項針對18~35歲的青年人每天發(fā)微博數(shù)量的調(diào)查中,設(shè)一個人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當(dāng)m≥10時為A級,當(dāng)5≤m<10時為B級,當(dāng)0≤m<5時為C級.現(xiàn)隨機抽取30個符合年齡條件的青年人開展每人“日均發(fā)微博條數(shù)”的調(diào)查,所抽青年人的“日均發(fā)微博條數(shù)”的數(shù)據(jù)如下:

11

10

6

15

9

16

13

12

0

8

2

8

10

17

6

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12

(1)求樣本數(shù)據(jù)中為A級的頻率;

(2)試估計1000個18~35歲的青年人中“日均發(fā)微博條數(shù)”為A級的人數(shù)

(3)從樣本數(shù)據(jù)為C級的人中隨機抽取2人,用樹狀圖或列表法求抽得2個人的“日均發(fā)微博條數(shù)”都是3的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCDAD上一點,EF分別為PB、PC的中點,△PEF、△PDC△PAB的面積分別為S、S1S2,若S=2,則S1+S2=( )

A. 4 B. 6 C. 8 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形各邊長度如下,其中不是直角三角形的是(  )

A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若△ABC的三邊長a,b,c滿足a2+b2+c2+50=6a+8b+10c,則△ABC的形狀是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一RtABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知A1AC1是由ABC旋轉(zhuǎn)得到的.

(1)請寫出旋轉(zhuǎn)中心的坐標(biāo)是 ,旋轉(zhuǎn)角是 度;

(2)以(1)中的旋轉(zhuǎn)中心為中心,畫出A1AC1順時針旋轉(zhuǎn)90°的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:關(guān)于x的方程x2﹣3x+1=0(x≠0)

方程兩邊同時乘以得:x﹣3+=0即x+=3

(x+2=x2++2x=x2++2

x2+=(x+2﹣2=32﹣2=7

根據(jù)以上材料,解答下列問題:

(1)x2﹣4x+1=0(x≠0),則x2+= ,x4+=

(2)2x2﹣7x+2=0(x≠0),求x3+的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程2x25x+1=0的根的情況是(

A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

C.沒有實數(shù)根 D.無法確定

查看答案和解析>>

同步練習(xí)冊答案