【題目】如圖,已知線段OA交⊙O于點(diǎn)B,且OB=AB,點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),那么∠OAP的最大值是(
A.30°
B.45°
C.60°
D.90°

【答案】A
【解析】解:根據(jù)題意知,當(dāng)∠OAP取最大值時(shí),OP⊥AP;

在Rt△AOP中,∵OP=OB,OB=AB,

∴OA=2OP,

∴∠OAP=30°.

故選A.

【考點(diǎn)精析】本題主要考查了直線與圓的三種位置關(guān)系和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn);切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABC中,DBC的中點(diǎn),DEBC,垂足為D,交AB于點(diǎn)E,且BE2EA2AC2,

(1)求證:∠A90°.

(2)DE3,BD4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:(1)已知A(1,2)B(3,2),C(1,﹣1),D(3,﹣3).在平面直角坐標(biāo)系中描出這幾個(gè)點(diǎn),并分別找到線段ABCD中點(diǎn)P1P2,然后寫出它們的坐標(biāo),則P1   ,P2   

探究發(fā)現(xiàn):(2)結(jié)合上述計(jì)算結(jié)果,你能發(fā)現(xiàn)若線段的兩個(gè)端點(diǎn)的坐標(biāo)分別為(x1y1),(x2y2),則線段的中點(diǎn)坐標(biāo)為   

拓展應(yīng)用:(3)利用上述規(guī)律解決下列問題:已知三點(diǎn)E(12),F(3,1),G(1,4),第四個(gè)點(diǎn)H(x,y)與點(diǎn)E、點(diǎn)F、點(diǎn)G中的一個(gè)點(diǎn)構(gòu)成的線段的中點(diǎn)與另外兩個(gè)端點(diǎn)構(gòu)成的線段的中點(diǎn)重合,求點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD,給出了下列三個(gè)論斷:①對(duì)角線AC平分∠BAD;CD=BC;③∠D+B=180°.在上述三個(gè)論斷中,若以其中兩個(gè)論斷作為條件另外一個(gè)論斷作為結(jié)論,則可以得出______個(gè)正確的命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(5,3)、B(5,1).
(1)在圖中標(biāo)出△ABC外心D的位置,并直接寫出它的坐標(biāo);
(2)判斷△ABC的外接圓D與x軸、y軸的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.

(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為線段BD上一點(diǎn),若SBCP= ,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線上一點(diǎn),作MN⊥CD,交直線CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:
根據(jù)城市規(guī)劃設(shè)計(jì),某市工程隊(duì)準(zhǔn)備為該城市修建一條長4800米的公路.鋪設(shè)600m后,為了盡量減少施工對(duì)城市交通造成的影響,該工程隊(duì)增加人力,實(shí)際每天修建公路的長度是原計(jì)劃的2倍,結(jié)果9天完成任務(wù),該工程隊(duì)原計(jì)劃每天鋪設(shè)公路多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案