【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點M、N分別在線段AC、AB上,將ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當DCM為直角三角形時,折痕MN的長為__

【答案】

【解析】依據(jù)DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,CDM是直角三角形;當∠CMD=90°時,CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.

分兩種情況:

①如圖,當∠CDM=90°時,CDM是直角三角形,

∵在RtABC中,∠B=90°,A=60°,AC=2+4,

∴∠C=30°,AB=AC=+2,

由折疊可得,∠MDN=A=60°,

∴∠BDN=30°

BN=DN=AN,

BN=AB=

AN=2BN=,

∵∠DNB=60°

∴∠ANM=DNM=60°

∴∠AMN=60°,

AN=MN=;

②如圖,當∠CMD=90°時,CDM是直角三角形,

由題可得,∠CDM=60°,A=MDN=60°,

∴∠BDN=60°,BND=30°,

BD=DN=AN,BN=BD,

又∵AB=+2,

AN=2,BN=,

NNHAMH,則∠ANH=30°

AH=AN=1,HN=,

由折疊可得,∠AMN=DMN=45°

∴△MNH是等腰直角三角形,

HM=HN=,

MN=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BC30cm,AC40cm,點D在線段AB上從點B出發(fā),以2cm/s的速度向終點A運動,設點D的運動時間為ts).

1)用含t的代數(shù)式表示BD的長;

2)求AB的長;

3)求AB邊上的高;

4)當BCD為等腰三角形時,求t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段CD垂直平分線段AB,垂足為HCA的延長線交BD的延長線于ECB的延長線交AD的延長線于F

1)求證:DEDF

2)若AEAB,∠E22.5°,則直接寫出圖中內(nèi)角含有45°等腰三角形(寫出3個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

1)選手甲的成績的中位數(shù)是   分;選手乙的成績的眾數(shù)是   分;

2)計算選手甲的平均成績和方差;

3)已知選手乙的成績的方差是15,則成績較穩(wěn)定的是哪位選手?請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經(jīng)》九題古證.

(以上材料來源于《古證復原的原則》《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)

請根據(jù)上圖完成這個推論的證明過程.

證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),

S矩形EBMF=S△ABC-(____________________________).

易知,S△ADC=S△ABC____________________________,____________________________

可得S矩形NFGD=S矩形EBMF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等腰三角形,ABAC,點DAB上一點,過點DDEBCBC于點E,交CA延長線于點F

1)證明:ADF是等腰三角形;

2)若∠B60°,BD4,AD2,求EC的長,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在(

A.在∠A、∠B兩內(nèi)角平分線的交點處

B.AC、BC兩邊垂直平分線的交點處

C.AC、BC兩邊高線的交點處

D.AC、BC兩邊中線的交點處

查看答案和解析>>

同步練習冊答案