如圖在平面直角坐標系內,以點C(1,1)為圓心,2為半徑作圓,交x軸于A、B兩點,開口向下的拋物線經過A、B兩點,且其頂點P在⊙C上。

(1)寫出A、B兩點的坐標;
(2)確定此拋物線的解析式;

(1) A(1-,0),B(1+,0);(2)y=-x2+2x+2.

解析試題分析:(1)過C作AB的垂線,設垂足為H,在Rt△CAH中,已知圓的半徑和CH的長(由C點坐標獲得),利用勾股定理即可求得AH的長,進而可得到點A的坐標,B點坐標的求法相同.
(2)根據(jù)拋物線和圓的對稱性知:C、P都在弦AB的垂直平分線上,已知了C點坐標和圓的半徑,即可得到點P的坐標,而P為拋物線頂點,可將所求拋物線設為頂點坐標式,然后將A點坐標代入拋物線的解析式中,即可求得待定系數(shù)的值,從而求出該拋物線的解析式.
試題解析:(1)過點C作CH⊥x軸,H為垂足;

又∵C(1,1),
∴CH=OH=1;(1分)
∴在Rt△CHB中,HB= ;
∵CH⊥AB,CA=CB,
∴AH=BH;
故A(1-,0),B(1+,0).
(2)由圓與拋物線的對稱性可知拋物線的頂點P的坐標為(1,3);
∴設拋物線解析式為y=a(x-1)2+3,
由已知得拋物線經過點B(1+,0),
把點B(1+,0)代入上式,
解得a=-1,
∴拋物線的解析式為:y=-x2+2x+2.
考點: 二次函數(shù)綜合題

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線與x軸交于A、B兩點,點C是拋物線在第一象限內部分的一個動點,點D是OC的中點,連接BD并延長,交AC于點E.

(1)說明:
(2)當點C、點A到y(tǒng)軸距離相等時,求點E坐標.
(3)當的面積為時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.

(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了改善市民的生活環(huán)境,我市在某河濱空地處修建一個如圖所示的休閑文化廣場.在Rt△內修建矩形水池,使頂點、在斜邊上,、分別在直角邊、上;又分別以、、為直徑作半圓,它們交出兩彎新月(圖中陰影部分),兩彎新月部分栽植花草;其余空地鋪設地磚.其中,.設米,米.

(1)求之間的函數(shù)解析式;
(2)當為何值時,矩形的面積最大?最大面積是多少?
(3)求兩彎新月(圖中陰影部分)的面積,并求當為何值時,矩形的面積等于兩彎新月面積的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調查,單價每降低1元,可多售出10件,但最低單價應高于購進的價格;第二個月結束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉時單價為40元,設第二個月單價降低x元.
(1)填表:(不需化簡)

時間
 第一個月
第二個月
清倉時
 單價(元)
 80
 
 40
 銷售量(件)
 200
 
 
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經過點B。

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個交點,且兩交點A、B之間的距離為定值;
(2)設點P為此拋物線上一點,若△PAB的面積為8,求符合條件的點P的坐標;
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點P的個數(shù)(本小題直接寫出結論,不要求寫出計算、證明過程).

查看答案和解析>>

同步練習冊答案