直線l1平行于直線l2,直線l3、l4分別與l1、l2交于點B、F和A、E,點D是直線l3上一動點,DC∥AB交l4于點C.
(1)如圖,當(dāng)點D在l1、l2兩線之間運(yùn)動時,試找出∠BAD、∠DEF、∠ADE之間的關(guān)系,并說明理由;
(2)當(dāng)點D在l1、l2兩線外側(cè)運(yùn)動時,試探究∠BAD、∠DEF、∠ADE之間的關(guān)系(點D和B、F不重合),畫出圖形,給出結(jié)論,不必說明理由.
(1) ∠BAD+DEF=∠ADE;(2) ①當(dāng)點D在BF的延長線上運(yùn)動時(如圖2),∠BAD=∠ADE+∠DEF;②當(dāng)點D在FB的延長線上運(yùn)動時(如圖3),∠DEF=∠ADE+∠BAD.
解析試題分析:(1)由AB∥CD,根據(jù)平行線的性質(zhì)得到∠BAD=∠ADC,而l1∥l2,則CD∥EF,得到∠DEF=∠CDE,于是∠BAD+DEF=∠ADE;
(2)討論:當(dāng)點D在BF的延長線上運(yùn)動時(如圖2),由(1)得到∠BAD=∠ADC,∠DEF=∠CDE,則∠BAD=∠ADE+∠DEF;當(dāng)點D在FB的延長線上運(yùn)動時(如圖3),∠DEF=∠ADE+∠BAD.
試題解析:(1)∠BAD+∠DEF=∠ADE
理由如下:(如圖1)
∵AB∥CD,
∴∠BAD=∠ADC(兩直線平行,內(nèi)錯角相等),
∵l1∥l2,
∴CD∥EF,
∴∠DEF=∠CDE(兩直線平行,內(nèi)錯角相等),
故∠BAD+∠DEF=∠ADC+∠CDE.
即∠BAD+DEF=∠ADE;
(2)有兩種情況:
①當(dāng)點D在BF的延長線上運(yùn)動時(如圖2),∠BAD=∠ADE+∠DEF;
②當(dāng)點D在FB的延長線上運(yùn)動時(如圖3),∠DEF=∠ADE+∠BAD.
考點:平行線的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知AB∥CD,分別探討下列四個圖形中∠APC和∠A、∠C的關(guān)系,并選擇圖(1)、(2)之一說明理由。 (10分)
(1) (2) (3) (4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知AD⊥BC于D,BG⊥BC于G,AE=AF,說明AD平分∠BAC,下面是小穎的解答過程,請補(bǔ)充完整。
解:∵AD⊥BC,BG⊥BC(已知)
∴∠4=∠5=90°(垂直定義)
∴__________∥____________( )
∴∠2=_______________( )
∠1=_____________( )
又∵AE=AF(已知)
∴∠3=_____________( )
∴∠1=∠2(等量代換)
∴AD平分∠BAC(角平分線定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)課老師提出這樣一個問題:已知如圖,直線AB//CD,直線EF與直線AB交于G,與直線CD交于H,且GN平分 ,求證:.
下面是某同學(xué)給出一種證法,請你將解答中缺少的條件、結(jié)論或證明理由補(bǔ)充完整.
證明:
(已知)
(_________________________)
AB//CD,EF與AB、CD分別交于G、H(已知)
( __________________________ )
是的平分線,(已知)
_______ (角平分線定義)
(已證)
(_________________)
_______________________(已證)
(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
填寫推理理由
如圖,已知AD⊥BC于D,EF⊥BC于F,AD平分∠BAC.將∠E=∠1的過程填寫完整.
解:解:∵AD⊥BC, EF⊥BC( 已知 )
∴∠ADC=∠EFC= 90°( 垂直的意義 )
∴AD//EF
∴∠1= ( )
∠E= ( )
又∵AD平分∠BAC( 已知 )
∴ =
∴∠1=∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知線段AB.
(1)用尺規(guī)作圖的方法作出線段AB的垂直平分線CD(保留作圖痕跡,不要求寫出作法);
(2)在(1)中所作的直線CD上任意取兩點M,N(線段AB的上方).連結(jié)AM,AN,BM,BN.求證:∠MAN=∠MBN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com