【題目】如圖,點(diǎn)OABC內(nèi)一點(diǎn),連接OB、OC,線段AB、OB、OC、AC的中點(diǎn)分別為D、EF、G

1)判斷四邊形DEFG的形狀,并說明理由;

2)若MEF的中點(diǎn),OM=2,∠OBC和∠OCB互余,求線段BC的長(zhǎng).

【答案】1)四邊形DEFG是平行四邊形,理由見解析;(2BC=8

【解析】

1)根據(jù)三角形中位線定理、平行四邊形的判定定理解答;

2)根據(jù)直角三角形的性質(zhì)求出EF,根據(jù)三角形中位線定理計(jì)算即可.

解:(1)四邊形DEFG是平行四邊形,

理由如下:∵E、F分別為線段OB、OC的中點(diǎn),

EF=BC,EFBC

同理DG=BC,DGBC

EF=DG,EFDG,

∴四邊形DEFG是平行四邊形;

2)∵∠OBC和∠OCB互余,

∴∠BOC=90°

MEF的中點(diǎn),OM=2

EF=2OM=4,

BC=2EF=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作△ABC關(guān)于點(diǎn)C成中心對(duì)稱的△A1B1C1,并直接寫出A1B1、C1各點(diǎn)的坐標(biāo);

2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn)A(3,0),B(﹣1,0),C(0,3),連接AC,點(diǎn)M是拋物線AC段上的一點(diǎn),且CM∥x軸.

(1)求拋物線的解析式;

(2)求∠CAM的正切值;

(3)點(diǎn)Q在拋物線上,且∠BAQ=∠CAM,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形MNPQ網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ4條邊的小方格頂點(diǎn)上.

1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長(zhǎng)為1,求:正方形ABCD的面積;

2在圖2中畫出以AB為一條直角邊的等腰直角△ABC,且點(diǎn)C在小正方形的頂點(diǎn)上;

在圖2中畫出以AB為一邊的菱形ABDE,且點(diǎn)D和點(diǎn)E均在小正方形的頂點(diǎn)上,菱形ABDE的面積為15,連接CE,請(qǐng)直接寫出線段CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P的坐標(biāo)為(4,3),把點(diǎn)P繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到點(diǎn)Q.

(1)寫出點(diǎn)Q的坐標(biāo)是 ;

(2)若把點(diǎn)Q向右平移m個(gè)單位長(zhǎng)度,向下平移2m個(gè)單位長(zhǎng)度后,得到的點(diǎn)Q′恰好落在第三象限,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:正方形OABC置于坐標(biāo)系中,B的坐標(biāo)是(-4,4),點(diǎn)D是邊OA上一動(dòng)點(diǎn),以OD為邊在第一象限內(nèi)作正方形ODEF

1CDAF有怎樣的位置關(guān)系,猜想并證明;

2)當(dāng)OD=______時(shí),直線CD平分線段AF;

3)在OD=2時(shí),將正方形ODEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α°α°180°),求當(dāng)C、D、E共線時(shí)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=∠ADC,∠BAD=∠BCDB. ABBC

C. ABCD,ADBCD. DAB+BCD180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)DDFAC,垂足為F,過點(diǎn)FFGAB,垂足為G,連接GD,

1)求證:DF與⊙O的位置關(guān)系并證明;

2)求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=1,AB>1,AG平分BAD,分別過點(diǎn)B,CBEAG 于點(diǎn)E,CFAG于點(diǎn)F,則AEGF的值為(

A. 1 B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案