【題目】已知:△ABC為等邊三角形.
(1)求作:△ABC的外接圓⊙O.(不寫作法,保留作圖痕跡)
(2)射線AO交BC于點(diǎn)D,交⊙O于點(diǎn)E,過E作⊙O的切線EF,與AB的延長(zhǎng)線交于點(diǎn)F.
①根據(jù)題意,將(1)中圖形補(bǔ)全;
②求證:EF∥BC;
③若DE=2,求EF的長(zhǎng).
【答案】(1)如圖所示:⊙O即為所求.見解析;(2)①如圖2,補(bǔ)全圖形,見解析;②證明見解析;③EF=.
【解析】
(1)直接利用外接圓的作法作出三角形任意兩邊的垂直平分線,進(jìn)而得出外接圓圓心,進(jìn)而得出答案;
(2)①按題意畫出圖形即可;
②連接OB,OC,證明AE⊥BC.可得出AE⊥EF,則結(jié)論得證;
③得出∠BOD=60°,設(shè)OD=x,則OB=OE=2+x,得出cos∠BOD,
求出x=2,得出tan∠BAD,則可求出EF的值.
(1)如圖所示:⊙O即為所求.
(2)①如圖2,補(bǔ)全圖形:
②證明:連接OB,OC,
∵OB=OC,
∴點(diǎn)O在線段BC的垂直平分線上,
∵△ABC為等邊三角形,
∴AB=AC,
∴點(diǎn)A在線段BC的垂直平分線上,
∴AO垂直平分BC,
∴AE⊥BC.
∵直線EF為⊙O的切線,
∴AE⊥EF,
∴EF∥BC;
③解:∵△ABC為等邊三角形,
∴∠BAC=60°,
∵AB=AC,AE⊥BC,
∴∠BAD=∠BAC,
∴∠BAD=30°,
∴∠BOD=60°,
∵DE=2,
設(shè)OD=x,
∴OB=OE=2+x,
在Rt△OBD中,∵OD⊥BC,∠BOD=60°,
∴cos∠BOD=,
∴x=2,
∴OD=2,OB=4,
∴AE=8,
在△AEF中,∵AE⊥EF,∠BAD=30°,
∴tan∠BAD=,
∴EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn),交直線于點(diǎn).動(dòng)點(diǎn)在直線上以每秒個(gè)單位的速度從點(diǎn)向終點(diǎn)運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)以每秒個(gè)單位的速度從點(diǎn)沿的方向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求點(diǎn)的坐標(biāo)和的長(zhǎng).
(2)當(dāng)時(shí),線段交于點(diǎn)且求的值.
(3)在點(diǎn)的整個(gè)運(yùn)動(dòng)過程中,
①直接用含的代數(shù)式表示點(diǎn)的坐標(biāo).
②利用(2)的結(jié)論,以為直角頂點(diǎn)作等腰直角(點(diǎn)按逆時(shí)針順序排列).當(dāng)與的一邊平行時(shí),求所有滿足條件的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1) ,將一個(gè)正六邊形各邊延長(zhǎng),構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1,取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和1D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E 2F 2,如圖(3) 中陰影部分;如此下去…,則正六角星形AnFnBnDnCnE nF n的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),作PM⊥AB交曲線L于點(diǎn)M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點(diǎn)P由A運(yùn)動(dòng)到B的過程中,對(duì)于x1=AP的每一個(gè)確定的值,θ=∠QMP都有唯一確定的值與其對(duì)應(yīng),x1與θ的對(duì)應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時(shí),發(fā)現(xiàn)了另外一個(gè)函數(shù):對(duì)于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個(gè)值,都有唯一確定的角度θ與之對(duì)應(yīng),x2與θ的對(duì)應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對(duì)應(yīng)的θ的值與圖2中x2所對(duì)應(yīng)的θ的值相等,可以在兩個(gè)變量x1與x2之間建立函數(shù)關(guān)系.
①在這個(gè)函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個(gè)函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時(shí),x2的值約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一筆總額為元的獎(jiǎng)金,分為一等獎(jiǎng)、二等獎(jiǎng)和三等獎(jiǎng),獎(jiǎng)金金額均為整數(shù),每個(gè)一等獎(jiǎng)的獎(jiǎng)金是每個(gè)二等獎(jiǎng)獎(jiǎng)金的兩倍,每個(gè)二等獎(jiǎng)的獎(jiǎng)金是每個(gè)三等獎(jiǎng)獎(jiǎng)金的兩倍,若把這筆獎(jiǎng)金發(fā)給個(gè)人,評(píng)一、二、三等獎(jiǎng)的人數(shù)分別為,且,那么三等獎(jiǎng)的獎(jiǎng)金金額是_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果的兩個(gè)端點(diǎn)分別在的兩邊上(不與點(diǎn)重合),并且除端點(diǎn)外的所有點(diǎn)都在的內(nèi)部,則稱是的“連角弧”.
(1)圖1中,是直角,是以為圓心,半徑為1的“連角弧”.
①圖中的長(zhǎng)是______,并在圖中再作一條以為端點(diǎn)、長(zhǎng)度相同的“連角弧”;
②以為端點(diǎn),弧長(zhǎng)最長(zhǎng)的“連角弧”的長(zhǎng)度是_______.
(2)如圖2,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)在軸正半軸上,若是半圓,也是的“連角弧”,求的取值范圍.
(3)如圖3,已知點(diǎn)分別在射線上,是的“連角弧”,且所在圓的半徑為,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ACB=90°,過點(diǎn)D作DE⊥BC交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:四邊形ACED是矩形;
(2)連接AE交CD于點(diǎn)F,連接BF.若∠ABC=60°,CE=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB,如果將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,則稱點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn).點(diǎn)C為線段AB關(guān)于點(diǎn)A的逆轉(zhuǎn)點(diǎn)的示意圖如圖1:
(1)如圖2,在正方形ABCD中,點(diǎn)_____為線段BC關(guān)于點(diǎn)B的逆轉(zhuǎn)點(diǎn);
(2)如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x,0),且x>0,點(diǎn)E是y軸上一點(diǎn),點(diǎn)F是線段EO關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),點(diǎn)G是線段EP關(guān)于點(diǎn)E的逆轉(zhuǎn)點(diǎn),過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸交于點(diǎn)H.
①補(bǔ)全圖;
②判斷過逆轉(zhuǎn)點(diǎn)G,F的直線與x軸的位置關(guān)系并證明;
③若點(diǎn)E的坐標(biāo)為(0,5),連接PF、PG,設(shè)△PFG的面積為y,直接寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線與軸交于點(diǎn),與軸交于點(diǎn),以為直徑作,點(diǎn)為線段上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),作于,連結(jié)并延長(zhǎng)交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和的值;
(2)設(shè).
①當(dāng)時(shí),求的值及點(diǎn)的坐標(biāo);
②求關(guān)于的函數(shù)表達(dá)式.
(3)如圖2,連接,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com