【題目】已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是( 。
A.1B.7C.1或7D.無法確定
【答案】C
【解析】
由于弦AB、CD的具體位置不能確定,故應分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.
解:①當弦AB和CD在圓心同側時,如圖①,
過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,
∵AB∥CD,
∴OE⊥AB,
∵AB=8,CD=6,
∴AE=4,CF=3,
∵OA=OC=5,
∴由勾股定理得:EO==3,OF==4,
∴EF=OF﹣OE=1;
②當弦AB和CD在圓心異側時,如圖②,
過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,
EF=OF+OE=7,
所以AB與CD之間的距離是1或7.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,以OB為直徑畫圓M,過D作⊙M的切線,切點為N,分別交AC、BC于點E、F,已知AE=5,CE=3,則DF的長是( 。
A. 3B. 4C. 4.8D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(A在B的右側).
(1)當A(4,2)時,求反比例函數(shù)的解析式及B點的坐標;
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)當A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=與x軸、y軸分別交于A、B兩點,P是以C(0,2)為圓心,2為半徑的圓上一動點,連結PA、PB.則△PAB面積的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函數(shù)的圖象經(jīng)過點.
(1)求點的坐標和反比例函數(shù)的解析式;
(2)將四邊形沿軸向上平移個單位長度得到四邊形,問點是否落在(1)中的反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,BD平分∠ABC,過D作DE⊥BD交AB于點E,經(jīng)過B,D,E三點作⊙O.
(1)求證:AC與⊙O相切于D點;
(2)若AD=15,AE=9,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖所示.請解答:
(1)點A、C的坐標分別是 、 ;
(2)畫出△ABC繞點A按逆時針方向旋轉90°后的△AB'C';
(3)在(2)的條件下,求點C旋轉到點C'所經(jīng)過的路線長(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)所示,等邊△ABC中,線段AD為其內角角平分線,過D點的直線B1C1⊥AC于點C1交AB的延長線于點B1.
(1)請你探究:=,=是否都成立?
(2)請你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內角角平分線,請問=一定成立嗎?并證明你的判斷.
(3)如圖(2)所示Rt△ABC中,∠ACB=90°,AC=8,AB=,E為AB上一點且AE=5,CE交其內角角平分線AD于F.試求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com