(2010•紹興)如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過(guò)D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過(guò)C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過(guò)△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

【答案】分析:(1)由于兩個(gè)拋物線同時(shí)經(jīng)過(guò)A、B兩點(diǎn),將A點(diǎn)坐標(biāo)代入兩個(gè)拋物線中,即可求得待定系數(shù)的值,進(jìn)而可求出B點(diǎn)的坐標(biāo).
(2)①已知了點(diǎn)D的坐標(biāo),即可求得正△DGH的邊長(zhǎng),過(guò)G作GE⊥DH于E,易求得DE、EH、EG的長(zhǎng);根據(jù)(1)題所求得的C2的解析式,即可求出點(diǎn)M的坐標(biāo),也就能得到ME、MH的長(zhǎng),易證△MEG∽△MHN,根據(jù)相似三角形所得比例線段,即可求得N點(diǎn)的橫坐標(biāo).
②求點(diǎn)N橫坐標(biāo)的取值范圍,需考慮N點(diǎn)橫坐標(biāo)最大、最小兩種情況:
①當(dāng)點(diǎn)D、A重合,且直線l經(jīng)過(guò)點(diǎn)G時(shí),N點(diǎn)的橫坐標(biāo)最大;解法可參照(2)的思路,過(guò)點(diǎn)G作GQ⊥x軸于Q,過(guò)點(diǎn)M作MF⊥x軸于F,設(shè)出點(diǎn)N的橫坐標(biāo),然后分別表示出NQ、NF的長(zhǎng),通過(guò)證△NQG∽△NFM,根據(jù)所得比例線段,即可求得此時(shí)N點(diǎn)的橫坐標(biāo);
②當(dāng)點(diǎn)D、B重合,直線l過(guò)點(diǎn)D時(shí),N點(diǎn)的橫坐標(biāo)最小,解法同①.
解答:解:(1)∵點(diǎn)A(2,4)在拋物線C1上,
∴把點(diǎn)A坐標(biāo)代入y=a(x+1)2-5得a=1,
∴拋物線C1的解析式為y=x2+2x-4,
設(shè)B(-2,b),
∴b=-4,
∴B(-2,-4);

(2)①如圖
∵M(jìn)(1,5),D(1,2),且DH⊥x軸,
∴點(diǎn)M在DH上,MH=5,
過(guò)點(diǎn)G作GE⊥DH,垂足為E,
由△DHG是正三角形,可得EG=,EH=1,
∴ME=4,
設(shè)N(x,0),則NH=x-1,
由△MEG∽△MHN,得,
,
∴x=,
∴點(diǎn)N的橫坐標(biāo)為
②當(dāng)點(diǎn)D移到與點(diǎn)A重合時(shí),如圖,
直線l與DG交于點(diǎn)G,此時(shí)點(diǎn)N的橫坐標(biāo)最大;
過(guò)點(diǎn)G,M作x軸的垂線,垂足分別為點(diǎn)Q,F(xiàn),
設(shè)N(x,0),
∵A(2,4),即AH=4,且△AGH為等邊三角形,
∴∠AHG=60°,HG=AH=4,
∴∠GHQ=30°,又∠GQH=90°,
∴GQ=HG=2,HQ==2,
∴OQ=OH+HQ=2+2
∴G(,2),
∴NQ=,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
,
,
,
當(dāng)點(diǎn)D移到與點(diǎn)B重合時(shí),如圖:
直線l與DG交于點(diǎn)D,即點(diǎn)B,
此時(shí)點(diǎn)N的橫坐標(biāo)最。
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
設(shè)N(x,0),
∵△BHN∽△MFN,

,
,
∴點(diǎn)N橫坐標(biāo)的范圍為≤x≤且x≠0.
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,主要考查二次函數(shù)解析式的確定、等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì);在解答(2)題時(shí),關(guān)鍵是正確地作圖,構(gòu)造出與所求相關(guān)的相似三角形,然后利用相似三角形的性質(zhì)來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•紹興)如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問(wèn):當(dāng)CF為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•紹興)如圖,設(shè)拋物線C1:y=a(x+1)2-5,C2:y=-a(x-1)2+5,C1與C2的交點(diǎn)為A,B,點(diǎn)A的坐標(biāo)是(2,4),點(diǎn)B的橫坐標(biāo)是-2.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)D在線段AB上,過(guò)D作x軸的垂線,垂足為點(diǎn)H,在DH的右側(cè)作正三角形DHG.記過(guò)C2頂點(diǎn)M的直線為l,且l與x軸交于點(diǎn)N.
①若l過(guò)△DHG的頂點(diǎn)G,點(diǎn)D的坐標(biāo)為(1,2),求點(diǎn)N的橫坐標(biāo);
②若l與△DHG的邊DG相交,求點(diǎn)N的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•紹興)如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問(wèn):當(dāng)CF為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•紹興)如圖,已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點(diǎn),過(guò)點(diǎn)D作直線BC的垂線,分別交CB、CA的延長(zhǎng)線E、F.
(1)求證:EF是⊙O的切線;
(2)若EF=8,EC=6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案