【題目】如圖,平行四邊形ABCD中,E為AB邊上一點(diǎn),DE=DC,點(diǎn)F為線段DE上一點(diǎn),滿足∠DFC=∠A,連結(jié)CE.
(1)求證:AD=FC;
(2)求證:CE是∠BCF的角平分線.
【答案】(1)見解析;(2)見解析
【解析】(1)由平行四邊形性質(zhì),及DE=DC,∠DFC=∠A,證△ADE≌△FCD(AAS),得AD=FC.
(2)由△A DE≌△FCD得AE=FD,根據(jù)平行四邊形性質(zhì),再證BE=FE, CF=CB,可再證△CEF≌△CEB(SSS).可得∠FCE=∠BC.
證明:(1)∵四邊形ABCD平行四邊形,
∴AB∥CD.∴∠AED=∠FDC,
又∵∠A=∠DFC,DE=CD.
∴ △ADE≌△FCD(AAS).
∴AD=FC
(2)∵△A DE≌△FCD
∴AE=FD,
∵BE=AB-AE,EF=DE-DF,
∵四邊形ABCD平行四邊形,
∴AB=DC,又∵DE=DC,AD=FC,
∴BE=FE, CF=CB,
又∵CE=CE.
∴ △CEF≌△CEB(SSS).
∴∠FCE=∠BCE
∴CE是∠BCF的角平分線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)為A(1,-4) ,B(3,-3) ,C(1,-1).(每個小方格都是邊長為一個單位長度的正方形)
(1)將△ABC沿y軸方向向上平移5個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)A旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為,點(diǎn)B在數(shù)軸上對應(yīng)的數(shù)為b,且,b滿足
(1)求線段AB的長;
(2)點(diǎn)C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程的解,在數(shù)軸上是否存在點(diǎn)P,使得PA+PB=PC?若存在,求出點(diǎn)P對應(yīng)的數(shù);若不存在,說明理由;
(3)在(1)(2)條件下,點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,同時(shí),點(diǎn)B和點(diǎn)C分別以每秒4個單位長度和9個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,請問:AB﹣BC的值是否隨時(shí)間t的變化而改變?若變化,請說明理由;若不變,請求其常數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x+1)(x-m) (a為常數(shù),a1)的圖像過點(diǎn)(1,2).
(1)當(dāng)a=2時(shí),求m的值;
(2)試說明方程a(x+1)(x-m)=0兩根之間(不包括兩根)存在唯一整數(shù),并求出這個整數(shù);
(3)設(shè)M(n,y1)、N(n+1,y2)是拋物線上兩點(diǎn),當(dāng)n <-1時(shí),試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究與之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若,則________;
②如圖3,DC平分,EC平分,若,求的度數(shù);
③如圖4,的10 等分線相交于點(diǎn),若,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,∠D=2∠A.
(1)求證:CD是⊙O的切線;
(2)求證:DE=DC;
(3)若OD=5,CD=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BG交AF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )
A. 40° B. 45° C. 55° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了盡快的適應(yīng)中招體考項(xiàng)目,現(xiàn)某校初二(1)班班委會準(zhǔn)備籌集1800元購買A、B兩種類型跳繩供班級集體使用.
(1)班委會決定,購買A種跳繩的資金不少于B種跳繩資金的2倍,問最多用多少資金購買B種跳繩?
(2)經(jīng)初步統(tǒng)計(jì),初二(1)班有25人自愿參與購買,那么平均每生需交72元.初三(1)班了解情況后,把體考后閑置的跳繩贈送了若干給初二(1)班,這樣只需班級共籌集1350元.經(jīng)初二(1)班班委會進(jìn)一步宣傳,自愿參與購買的學(xué)生在25人的基礎(chǔ)上增加了4a%.則每生平均交費(fèi)在72元基礎(chǔ)上減少了2.5a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)對隊(duì)員進(jìn)行定點(diǎn)投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊(duì)員在五天中進(jìn)球數(shù)(單位:個)進(jìn)行統(tǒng)計(jì),結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為8,方差為3.2.
(1)求乙進(jìn)球的平均數(shù)和方差;
(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊(duì)員中選出一人去參加定點(diǎn)投籃比賽,應(yīng)選誰?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com