【題目】已知E,F分別是AB、CD上的動點(diǎn),P也為一動點(diǎn).
(1)如圖1,若AB∥CD,求證:∠P=∠BEP+∠PFD;
(2)如圖2,若∠P=∠PFD-∠BEP,求證:AB∥CD;
(3)如圖3,AB∥CD,移動E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.
【答案】(1)見解析;(2)見解析;(3)2
【解析】
(1)過P作PQ平行于AB,由AB與CD平行,得到PQ與CD平行,利用兩直線平行內(nèi)錯角相等得到兩對角相等,再由∠EPF=∠1+∠2,等量代換就可得證;
(2)先根據(jù)三角形外角的性質(zhì)得出∠P=∠BGP-∠BEP,再由∠P=∠PGB-∠BEP可知,∠PFD=∠PGB,由此可得出結(jié)論;
(3)由(1)中的結(jié)論∠EPF=∠BEP+∠PFD,設(shè)設(shè)∠PFD=x,則∠BEP=90°-x,根據(jù)∠PEG=∠BEP=90°-x,利用平角定義表示出∠AEG,即可求出所求比值.
解:(1)過P作PQ∥AB,
∵AB∥CD,
∴PQ∥CD,
∴∠BEP=∠1,∠2=∠PFD,
∵∠EPF=∠1+∠2,
∴∠EPF=∠BEP+∠PFD;
(2)∵∠BGP是△PEG的外角,
∴∠P=∠BGP-∠BEP.
∵∠P=∠PGB-∠BEP,
∴∠PFD=∠PGB,
∴AB∥CD;
(3)由(1)的結(jié)論∠EPF=∠BEP+∠PFD=90°,
設(shè)∠PFD=x,則∠BEP=90°-x,
∵∠PEG=∠BEP=90°-x,
∴∠AEG=180°-2(90°-x)=2x,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點(diǎn),且∠EDF+∠EAF=180°,求證DE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,P是BC邊中點(diǎn),AP交BD于點(diǎn)Q.則 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別是A(-4,-1),B(1,1),C(-1,4);點(diǎn)是△ABC內(nèi)一點(diǎn),當(dāng)點(diǎn)平移到點(diǎn)時.
①請寫出平移后新三個頂點(diǎn)的坐標(biāo);
②求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店甲、乙兩種商品三天銷售情況的賬目記錄如下表:
日期 | 賣出甲商品的數(shù)量(個) | 賣出乙商品的數(shù)量(個) | 收入(元) |
第一天 | 39 | 21 | 321 |
第二天 | 26 | 14 | 204 |
第三天 | 39 | 25 | 345 |
(1)財務(wù)主管在核查時發(fā)現(xiàn):第一天的賬目正確,但其他兩天的賬目有一天有誤,請你判斷第幾天的賬目有誤,并說明理由;
(2)求甲、乙兩種商品的單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分線,DE⊥AB,垂足為E.
(1)若CD=6,求AC的長;
(2)求證:AB-AC=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E是線段AD上的任意一點(diǎn)(E與A,D不重合),G,F,H分別為BE,BC,CE的中點(diǎn).
(1)試說明四邊形EGFH是平行四邊形;
(2)在(1)的條件下,若EF⊥BC,且EF=BC,試說明平行四邊形EGFH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
(3)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com