【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別相交于點AB,將△AOB沿直線AB翻折,得△ACB.若C),則該一次函數(shù)的解析式為

【答案】

【解析】

連接OC,過點CCD⊥x軸于點D,根據(jù)三角函數(shù)求A1,0),B點坐標(biāo)為:(0),再用待定系數(shù)法求解析式.

解:連接OC,過點CCD⊥x軸于點D,

△AOB沿直線AB翻折,得△ACB,C,),

∴AO=AC,OD=DC=,BO=BC,則tan∠COD==,故∠COD=30°,∠BOC=60°∴△BOC是等邊三角形,且∠CAD=60°,則sin60°=,即AC==1,

A1,0),sin30°===,則CO=

BO=,B點坐標(biāo)為:(0),

設(shè)直線AB的解析式為:,則,

解得:,即直線AB的解析式為:

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時,乙騎自行車同時由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結(jié)果比乙早到0.5小時.甲、乙兩人離A地距離ykm)與時間xh)的函數(shù)關(guān)系圖像如圖所示.下列說法:①.a=3.5,b=4甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時.其中正確的說法有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線的頂點D的坐標(biāo)為(1,-4),且與y軸交于點C0,-3).

1)求該函數(shù)的關(guān)系式及該拋物線與x軸的交點A,B的坐標(biāo).

2)請直接寫出ABC的外心M的坐標(biāo).

3)點E為該拋物線上一動點,且滿足tan∠ABE=tan∠ACB,請求出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店因為經(jīng)營不善欠下38400元的無息貸款的債務(wù),想轉(zhuǎn)行經(jīng)營服裝專賣店又缺少資金中國夢想秀欄目組決定借給該店30000元資金,并約定利用經(jīng)營的利潤償還債務(wù)所有債務(wù)均不計利息已知該店代理的品牌服裝的進(jìn)價為每件40元,該品牌服裝日銷售量與銷售價之間的關(guān)系可用圖中的一條折線實線來表示該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費用為106不包含債務(wù)

求日銷售量與銷售價之間的函數(shù)關(guān)系式;

若該店暫不考慮償還債務(wù),當(dāng)某天的銷售價為48件時,當(dāng)天正好收支平衡收人支出,求該店員工的人數(shù);

若該店只有2名員工,則該店最早需要多少天能還清所有債務(wù),此時每件服裝的價格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【本小題滿分9分】某校組織了一次初三科技小制作比賽,有A、BC、D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖和圖兩幅尚不完整的統(tǒng)計圖中.

(1)B班參賽作品有多少件?

(2)請你將圖的統(tǒng)計圖補(bǔ)充完整;

(3)通過計算說明,哪個班的獲獎率高?

(4)將寫有A、B、C、D四個字母的完全相同的卡片放人箱中,從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:

①∠EBG=45°;DEF∽△ABG;SABG=SFGH;AG+DF=FG.

其中正確的是__.(把所有正確結(jié)論的序號都選上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtΔABC,C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.

(1)求證:DE是圓O的切線.

(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF的六個角都是120°,邊長AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個六邊形的周長是:__

查看答案和解析>>

同步練習(xí)冊答案