【題目】如圖,ABDE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m

1)在圖中畫出此時DE在太陽光下的影子EF;

2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.

【答案】(1)詳見解析;(2)10m

【解析】

1)連接AC,過點DDF∥AC,交直線BC于點F,線段EF即為DE的投影;

2)易證△ABC∽△DEF,再根據(jù)相似三角形的對應邊成比例進行解答即可.

1)連接AC,過點DDF∥AC,交直線BC于點F,線段EF即為DE的投影.

2∵AC∥DF,

∴∠ACB=∠DFE,

∵∠ABC=∠DEF=90°,

∴△ABC∽△DEF,

∴ABDE=BCEF

∵AB=5m,BC=3mEF=6m,

∴5DE=36

∴DE=10m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一個二次數(shù)圖象上部分點的橫坐標與縱坐標的對應值如下表所示:

(1)求這個二次函數(shù)的達式;

(2)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;

(3)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀資料:我們把頂點在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如下左圖∠ABC所示。

同學們研究發(fā)現(xiàn):P為圓上任意一點,當弦AC經過圓心O時,且AB切⊙O于點A,此時弦切角∠CAB=∠P(圖甲)

證明:∵AB切⊙O于點A, ∴∠CAB=90°, 又∵AC是直徑, ∴∠P=90° ∴∠CAB=∠P

問題拓展:若AC不經過圓心O(如圖乙),該結論:弦切角∠CAB=∠P還成立嗎?

請說明理由。

知識運用:如圖,AD是△ABC中∠BAC的平分線,經過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F。 求證:EF∥BC。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.

(1)證明:AC=AF;

(2)若AD=2,AF=,求AE的長;

(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。

A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=(x-2)2x軸交于點A,與y軸交于點B,過點BBCx軸,交拋物線于點C,過點AADy軸,交BC于點D,點PBC下方的拋物線上(不與點B,C重合),連接PC,PD,設PCD的面積為S,則S的最大值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是實驗室中的一種擺動裝置,在地面上,支架是底邊為的等腰直角三角形,擺動臂長可繞點旋轉,擺動臂可繞點旋轉,,.

1)在旋轉過程中:

三點在同一直線上時,求的長;

三點在同一直角三角形的頂點時,求的長.

2)若擺動臂順時針旋轉,點的位置由外的點轉到其內的點處,連結,如圖2,此時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是甲、乙兩校男、女生人數(shù)的統(tǒng)計圖.

根據(jù)統(tǒng)計圖回答問題:

1)若甲校男生人數(shù)為273人,求該校女生人數(shù);

2)方方同學說:“因為甲校女生人數(shù)占全校人數(shù)的40%,而乙校女生人數(shù)占全校人數(shù)的55%,所以甲校的女生人數(shù)比乙校女生人數(shù)少”,你認為方方同學說的對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

同步練習冊答案