【題目】唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個(gè)有趣的數(shù)學(xué)問題我們稱之為“飲馬問題”.如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的C點(diǎn)飲馬后再到B點(diǎn)宿營.請問怎樣走才能使總的路程最短?某課題組在探究這一問題時(shí)抽象出數(shù)學(xué)模型:
直線l同旁有兩個(gè)定點(diǎn)A、B,在直線l上存在點(diǎn)P,使得PA+PB的值最。
解法:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′,連接A′B,則A′B與直線l的交點(diǎn)即為P,且PA+PB的最小值為線段A′B的長.
(1)根據(jù)上面的描述,在備用圖中畫出解決“飲馬問題”的圖形;
(2)利用軸對稱作圖解決“飲馬問題”的依據(jù)是 .
(3)應(yīng)用:①如圖2,已知∠AOB=30°,其內(nèi)部有一點(diǎn)P,OP=12,在∠AOB的兩邊分別有C、D兩點(diǎn)(不同于點(diǎn)O),使△PCD的周長最小,請畫出草圖,并求出△PCD周長的最小值;
②如圖3,點(diǎn)A(4,2),點(diǎn)B(1,6)在第一象限,在x軸、y軸上是否存在點(diǎn)D、點(diǎn)C,使得四邊形ABCD的周長最?若存在,請畫出草圖,并求其最小周長;若不存在,請說明理由.
【答案】(1)詳見解析;(2)兩點(diǎn)之間線段最短;(3)△PCD的周長=12;四邊形ABCD的周長的最小值為+5.
【解析】
(1) 詳見圖
(2) 依據(jù)是兩點(diǎn)之間線段最短;
(3) ①分別作P關(guān)于OA、OB的對稱點(diǎn)M、N,連接MN,交OA、OB于C、D,則△PCD的周長最小,可得△MON為等邊三角形,可得△PCD的周長;
②點(diǎn)A關(guān)于x軸的對稱點(diǎn)F的坐標(biāo)為(4,﹣2),點(diǎn)B關(guān)于y軸的對稱點(diǎn)E的坐標(biāo)為(﹣1,6),連接EF交x軸、y軸于點(diǎn)D、點(diǎn)C,則四邊形ABCD的周長最小,根據(jù)軸對稱的性質(zhì)可知,BC=BE,DA=DF,可得四邊形ABCD的周長的最小值.
解:(1)如圖所示:
(2)
利用軸對稱作圖解決“飲馬問題”的依據(jù)是兩點(diǎn)之間線段最短,
故答案為:兩點(diǎn)之間線段最短;
(3)
①分別作P關(guān)于OA、OB的對稱點(diǎn)M、N,
連接MN,交OA、OB于C、D,則△PCD的周長最小,
連接OM、ON,
由軸對稱的性質(zhì)可知,OM=OP=12,ON=OP=12,CP=CM,DP=DN,
∠MON=2∠AOB=60°,
∴△MON為等邊三角形,
∴MN=12,
∴△PCD的周長=PC+CD+DC=CM+CD+DN=MN=12;
②
點(diǎn)A關(guān)于x軸的對稱點(diǎn)F的坐標(biāo)為(4,﹣2),點(diǎn)B關(guān)于y軸的對稱點(diǎn)E的坐標(biāo)為(﹣1,6),
連接EF交x軸、y軸于點(diǎn)D、點(diǎn)C,
則四邊形ABCD的周長最小,
根據(jù)軸對稱的性質(zhì)可知,BC=BE,DA=DF,
∴BC+CD=AD=EC+CD+DF=EF==,
AB==5,
∴四邊形ABCD的周長的最小值為+5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=ax2﹣4ax+3(a≠0)與y軸交于點(diǎn)A,A、B兩點(diǎn)關(guān)于對稱軸對稱,直線OB分別與拋物線的對稱軸相交于點(diǎn)C.
(1)直接寫出對稱軸及B點(diǎn)的坐標(biāo);
(2)已知直線y2=bx﹣4b+3(b≠0)與拋物線的對稱軸相交于點(diǎn)D. ①判斷直線y2=bx﹣4b+3(b≠0)是否經(jīng)過點(diǎn)B,并說明理由;
②若△BDC的面積為1,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將斜邊長為2個(gè)等腰直角三角形按如圖所示的位置擺放,得到一條折線O﹣A﹣B﹣C﹣D…,點(diǎn)P從點(diǎn)O出發(fā)沿著折線以每秒 的速度向右運(yùn)動(dòng),2016秒時(shí),點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(6,8),OA=OB,點(diǎn)P在線段OB上,點(diǎn)Q在y軸的正半軸上,OP=2OQ,過點(diǎn)Q作x軸的平行線分別交OA,AB于點(diǎn)E,F(xiàn).
(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使△PEF為直角三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點(diǎn)A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),E是正方形ABCD的邊BC上的一個(gè)點(diǎn)(E與B、C兩點(diǎn)不重合),過點(diǎn)E作射線EP⊥AE,在射線EP上截取線段EF,使得EF=AE;過點(diǎn)F作FG⊥BC交BC的延長線于點(diǎn)G.
(1)求證:FG=BE;
(2)連接CF,如圖(2),求證:CF平分∠DCG;
(3)當(dāng) = 時(shí),求sin∠CFE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有2條生產(chǎn)線計(jì)劃在一個(gè)月(30天)內(nèi)組裝520臺產(chǎn)品(每天產(chǎn)品的產(chǎn)量相同),按原先的組裝速度,不能完成任務(wù);若加班生產(chǎn),每條生產(chǎn)線每天多組裝2臺產(chǎn)品,能提前完成任務(wù).
(1)每條生產(chǎn)線原先每天最多能組裝多少臺產(chǎn)品?
(2)要按計(jì)劃完成任務(wù),策略一:增添1條生產(chǎn)線,共要多投資19000元;策略二:按每天能組裝最多臺數(shù)加班生產(chǎn),每條生產(chǎn)線每天共要多花費(fèi)350元;選哪一個(gè)策略較省費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點(diǎn)A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測得樹頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計(jì)算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com