【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.
【答案】
(1)
解:設(shè)拋物線的解析式為y=ax2+bx+c,
∵A(1,0)、B(0,3)、C(﹣4,0),
∴ ,
解得:a=﹣ ,b=﹣ ,c=3,
∴經(jīng)過A、B、C三點的拋物線的解析式為y=﹣ x2﹣ x+3
(2)
解:在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:
∵OB=3,OC=4,OA=1,
∴BC=AC=5,
當BP平行且等于AC時,四邊形ACBP為菱形,
∴BP=AC=5,且點P到x軸的距離等于OB,
∴點P的坐標為(5,3),
當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形,則當點P的坐標為(5,3)時,以點A、B、C、P為頂點的四邊形為菱形.
(3)
解:設(shè)直線PA的解析式為y=kx+b(k≠0),
∵A(1,0),P(5,3),
∴ ,
解得:k= ,b=﹣ ,
∴直線PA的解析式為y= x﹣ ,
當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,
當點M與點P、A在同一直線上時,|PM﹣AM|=PA,
∴當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,
解方程組 ,得 或 ,
∴點M的坐標為(1,0)或(﹣5,﹣ )時,|PM﹣AM|的值最大,此時|PM﹣AM|的最大值為5.
【解析】(1)設(shè)拋物線的解析式為y=ax2+bx+c,把A,B,C三點坐標代入求出a,b,c的值,即可確定出所求拋物線解析式;
。2)在平面直角坐標系xOy中存在一點P,使得以點A、B、C、P為頂點的四邊形為菱形,理由為:根據(jù)OA,OB,OC的長,利用勾股定理求出BC與AC的長相等,只有當BP與AC平行且相等時,四邊形ACBP為菱形,可得出BP的長,由OB的長確定出P的縱坐標,確定出P坐標,當點P在第二、三象限時,以點A、B、C、P為頂點的四邊形只能是平行四邊形,不是菱形;
。3)利用待定系數(shù)法確定出直線PA解析式,當點M與點P、A不在同一直線上時,根據(jù)三角形的三邊關(guān)系|PM﹣AM|<PA,當點M與點P、A在同一直線上時,|PM﹣AM|=PA,
當點M與點P、A在同一直線上時,|PM﹣AM|的值最大,即點M為直線PA與拋物線的交點,聯(lián)立直線AP與拋物線解析式,求出當|PM﹣AM|的最大值時M坐標,確定出|PM﹣AM|的最大值即可.此題屬于二次函數(shù)綜合題,涉及的知識有:二次函數(shù)的性質(zhì),待定系數(shù)法確定拋物線解析式、一次函數(shù)解析式,菱形的判定,以及坐標與圖形性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線經(jīng)過坐標原點O,點A(6,﹣6 ),且以y軸為對稱軸.
(1)求拋物線的解析式;
(2)如圖2,過點B(0,﹣ )作x軸的平行線l,點C在直線l上,點D在y軸左側(cè)的拋物線上,連接DB,以點D為圓心,以DB為半徑畫圓,⊙D與x軸相交于點M,N(點M在點N的左側(cè)),連接CN,當MN=CN時,求銳角∠MNC的度數(shù);
(3)如圖3,在(2)的條件下,平移直線CN經(jīng)過點A,與拋物線相交于另一點E,過點A作x軸的平行線m,過點(﹣3,0)作y軸的平行線n,直線m與直線n相交于點S,點R在直線n上,點P在EA的延長線上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線段PR的中點K恰好落在拋物線上,求Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板按圖1所示的位置放置,圖2是由它抽象出的幾何圖形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連接DC.
(1)請找出圖2中與△ABE全等的三角形,并給予證明;
(2)證明:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后分別按原速同時駛往甲地,兩車之間的距離s(km)與慢車行駛時間t(h)之間的函數(shù)圖象如圖所示,則下列說法中:①甲、乙兩地之間的距離為560km;②快車速度是慢車速度的1.5倍;③快車到達甲地時,慢車距離甲地60km;④相遇時,快車距甲地320km;正確的是( )
A. ①② B. ①③ C. ①④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC的三個頂點的坐標為A(1,0),B(6,0),C(3,-4).
(1)求△ABC的面積
(2)若A,B兩點的位置不變,點P在軸什么位置時,的面積是面積的2倍;
(3)若A,B兩點的位置不變,點P在軸什么位置時,的面積是面積的2倍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,小正方形的邊長為1,△ABC的頂點在格點上.
(1)判斷△ABC是否是直角三角形?并說明理由.
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com