精英家教網 > 初中數學 > 題目詳情

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

1)請用兩種不同的方法求圖2中陰影部分的面積.

方法1 ;

方法2 ;

2)觀察圖2,請你寫出下列三個代數式:之間的等量關系: ;(3)根據(2)題中的等量關系,解決下面的問題:已知a+b=3ab=2 , 的值.

【答案】1)S=(m+n)2-4mn;S(m-n)2;(2)(m-n)2 =(m+n)2-4mn;(3)6或-6

【解析】

1)方法1:利用大正方形的面積減去四個長方形的面積;

方法2:直接用m-n算出陰影部分的邊長求面積即可;

(2)由(1)中兩種算面積的方法可得到之間的等量關系;

(3)先將因式分解,再利用(2)的結論計算即可.

解:(1)方法1:S=S正方形-S長方形

=(m+n)2-4mn

方法2:由圖2可得,陰影部分的邊長為m-n,故S=(m-n)2

2)由(1)中兩種算面積的方法可得:(m-n)2 =(m+n)2-4mn

(3)∵a+b=3,ab=2

∴(a-b)2 =(a+b2-4 ab

=1

∴a-b=±1

當a-b=1時,

=

=

=6

當a-b=-1時,

=

=

=-6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】O是△ABC外一點,OB、OC分別平分△ABC的外角∠CBE、∠BCF,若∠A50°,則∠BOC=_______度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列各題:

(1)先化簡,再求代數式(的值,其中x=cos30°+;

(2)已知α是銳角,且sin(α+15°)=.計算-4cosα-(π-3.14)0+tanα+()-1的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】選擇適當方法解下列方程

(1)

(2)

(3)

(4) x23x60;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=60°, ADC=ABC=90°,在AB、AD上分別找一點FE,連接CEEF、CF,當△CEF的周長最小時,則∠ECF的度數為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某隧道截面示意圖,它是由拋物線和長方形構成,已知米,米,拋物線頂點D到地面OA的垂直距離為10米,以OA所在直線為x軸,以OB所在直線為y軸建立直角坐標系.

求拋物線的解析式;

由于隧道較長,需要在拋物線型拱壁上需要安裝兩排燈,使它們到地面的高度相同,如果燈離地面的高度不超過8米,那么兩排燈的水平距離最小是多少米?

一輛特殊貨運汽車載著一個長方體集裝箱,集裝箱寬為4m,最高處與地面距離為6m,隧道內設雙向行車道,雙向行車道間隔距離為,交通部門規(guī)定,車載貨物頂部距離隧道壁的豎直距離不少于,才能安全通行,問這輛特殊貨車能否安全通過隧道?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

小明遇到一個問題:在中,,三邊的長分別為、、,求的面積.

小明是這樣解決問題的:如圖①所示,先畫一個正方形網格(每個小正方形的邊長為),再在網格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網格就能計算出的面積.他把這種解決問題的方法稱為構圖法.

參考小明解決問題的方法,完成下列問題:

)圖是一個的正方形網格(每個小正方形的邊長為) .

①利用構圖法在答卷的圖中畫出三邊長分別為、的格點

②計算①中的面積為__________.(直接寫出答案)

)如圖,已知,以,為邊向外作正方形,連接

①判斷面積之間的關系,并說明理由.

②若,,,直接寫出六邊形的面積為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】給出下列四個命題:

(1)若點A在直線y=2x-3上,且點A到兩坐標軸的距離相等,則點A在第一或第四象限;

(2)若A(a,m)、B(a-1,n)(a>0)在反比例函數y=

的圖象上,則m<n;

(3)一次函數y=-2x-3的圖象不經過第三象限;

(4)二次函數y=-2x2-8x+1的最大值是9.

正確命題的個數是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.則點CAB的距離是( )

A.B.C.3D.2

查看答案和解析>>

同步練習冊答案