某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鉛筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?

(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

(3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

解:(1)設(shè)購(gòu)進(jìn)甲,乙兩種鋼筆每支各需a元和b元,根據(jù)題意得:

,解得:。,

答:購(gòu)進(jìn)甲,乙兩種鋼筆每支各需5元和10元。

(2)設(shè)購(gòu)進(jìn)甲鋼筆x支,乙鋼筆y支,根據(jù)題意可得:

,解得:20≤y≤25。

∵x,y為整數(shù),∴y=20,21,22,23,24,25共六種方案。

∵5x=1000﹣10y>0,∴0<y<100。

∴該文具店共有6種進(jìn)貨方案。

(3)設(shè)利潤(rùn)為W元,則W=2x+3y,

∵5x+10y=1000,∴x=200﹣2y,代入上式得:W=400﹣y。

∵W隨著y的增大而減小,

∴當(dāng)y=20時(shí),W有最大值,最大值為W=400﹣20=380(元)。

【解析】(1)先設(shè)購(gòu)進(jìn)甲,乙兩種鋼筆每支各需a元和b元,根據(jù)購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元列出方程組,求出a,b的值即可。

(2)先設(shè)購(gòu)進(jìn)甲鋼筆x支,乙鋼筆y支,根據(jù)題意列出5x+10y=1000和不等式組6y≤x≤8y,把方程代入不等式組即可得出20≤y≤25,求出y的值即可。

(3)先設(shè)利潤(rùn)為W元,得出W=2x+3y=400﹣y,根據(jù)一次函數(shù)的性質(zhì)求出最大值!

考點(diǎn):一元一次不等式組、二元一次方程組和一次函數(shù)的應(yīng)用。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花)某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鋼筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省無(wú)錫市惠山北片九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鋼筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?

2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(四川攀枝花卷)數(shù)學(xué)(解析版) 題型:解答題

21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鉛筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.

(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?

(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?

(3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:攀枝花 題型:解答題

某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鋼筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來(lái)購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過(guò)乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷(xiāo)售每支甲種鋼筆可獲利潤(rùn)2元,銷(xiāo)售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問(wèn)的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案