如圖,求點P,使P到△ABC的兩頂點B、C距離相等,且PAB、AC的距離相等.

 

答案:
解析:

作法:(1)作∠A的平分線AD

(2)BC的垂直平分線m,交AD于點P.點P即為所求.

證明:∵P在線段BC的垂直平分線m上,∴PB、C距離相等.又∵PAD上,∴PAB、AC

的距離相等.∴點P即為所求.

 

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分精英家教網(wǎng)別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-
2
3
)

(1)求拋物線的解析式.
(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同
時點Q由點B出發(fā)沿BC邊以1cm/s的速度向點C運動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2
①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取
5
4
時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.
(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
13

(1)求這個二次函數(shù)的表達(dá)式.
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
(4)如圖,若點G(2,y)是該拋物線上一點,點P是直線AG下方的拋物線上一動點,當(dāng)點P運動到什么位置時,△APG的面積最大?求出此時P點的坐標(biāo)和△APG的最大面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=
5
6
x2+bx+c經(jīng)過點A、B.
(1)求拋物線的表達(dá)式.
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC以1cm/s的速度向點C移動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.
①移動開始后,是否存在某一時刻t,使得以O(shè)、A、P為頂點的三角形與△BPQ相似,若存在,請求出此時t的值,若不存在,請說明理由.
②移動開始后第t秒時,設(shè)S=PQ2(cm2),當(dāng)S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.
(3)若此拋物線上有一點D(3,
1
2
),在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題:已知:△ABC如圖,求作一點P,使點P到AB,AC兩邊的距離相等,并且點P到A、B兩點的距離也相等(保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊答案