若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨著x的增大而增大;在對稱軸的右側(cè),y隨著x的增大而減小,則所求二次函數(shù)的解析式為

[  ]

A.y=-x2+2x+4

B.y=ax2-2ax+a-3(a>0)

C.y=-2x2-4x-5

D.y=ax2-2ax+a-3(a<0)

答案:D
解析:

根據(jù)增減性,開口向下,即a<0.將B排除.

函數(shù)y24x1=2-3,頂點為(1,-3).

A中函數(shù)頂點為(1,5);C中函數(shù)頂點為(-1,-3);D中函數(shù)頂點為(1,-3);


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

16、若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為
一般形式:y=a(x-1)2-3(a<0),符合條件即可
.(寫出一個正確的解析時即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•杭州)若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年福建省莆田市荔城區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:選擇題

若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為( )
A.y=-x2+2x+4
B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5
D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年新人教版九年級(上)期末數(shù)學試卷A(解析版) 題型:選擇題

若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側(cè),y隨x的增大而增大,在對稱軸的右側(cè),y隨x的增大而減小,則所求二次函數(shù)的解析式為( )
A.y=-x2+2x+4
B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5
D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

同步練習冊答案