(2005•宜昌)已知:如圖,AB=AC,AE=AD,點D、E分別在AB、AC上.
求證:∠B=∠C.

【答案】分析:由已知條件,利用SAS,證得△ABE≌△ACD,再由全等三角形對應角相等,即可證得∠B=∠C.
解答:證明:在△ABE和△ACD中,
∵∠BAE=∠CAD,
又AB=AC,AE=AD,
∴△ABE≌△ACD;
∴∠B=∠C.
點評:本題重點考查了三角形全等的判定定理,是一道較為簡單的題目.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜昌)已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省宜昌市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•宜昌)已知:以原點O為圓心、5為半徑的半圓與y軸交于A、G兩點,AB與半圓相切于點A,點B的坐標為(3,yB)(如圖1);過半圓上的點C(xC,yC)作y軸的垂線,垂足為D;Rt△DOC的面積等于xC2
(1)求點C的坐標;
(2)①命題“如圖2,以y軸為對稱軸的等腰梯形MNPQ與M1N1P1Q1的上底和下底都分別在同一條直線上,NP∥MQ,PQ∥P1Q1,且NP>MQ.設拋物線y=ax2+h過點P、Q,拋物線y=a1x2+h1過點P1、Q1,則h>h1”是真命題.請你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)為例進行驗證;
②當圖1中的線段BC在第一象限時,作線段BC關于y軸對稱的線段FE,連接BF、CE,點T是線段BF上的動點(如圖3);設K是過T、B、C三點的拋物線y=ax2+bx+c的頂點,求K的縱坐標yK的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(10)(解析版) 題型:解答題

(2005•宜昌)已知:如圖,AB=AC,AE=AD,點D、E分別在AB、AC上.
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省徐州市中考數(shù)學試卷(樣卷)(解析版) 題型:解答題

(2005•宜昌)已知:如圖,AB=AC,AE=AD,點D、E分別在AB、AC上.
求證:∠B=∠C.

查看答案和解析>>

同步練習冊答案