如圖,把一塊含45°的直角三角板AOB放置在以O(shè)為原點(diǎn)的直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(0,2),直線x=2交x軸于點(diǎn)B.P為線段AB上一動(dòng)點(diǎn),作直線PC⊥PO,交直線x=2于點(diǎn)C.過(guò)P點(diǎn)作直線MN平行于x軸,交y軸于點(diǎn)M,交直線x=2于點(diǎn)N.
(1)填空:∠NPB=
度;
(2)當(dāng)點(diǎn)C在第一象限時(shí),
①試判斷PO與PC的大小關(guān)系,并加以證明;
②設(shè)AP長(zhǎng)為m,四邊形POBC的面積為S,請(qǐng)求出S與m間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為t,當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)C也隨之在直線x=2上移動(dòng),以點(diǎn)B為圓心
,BC長(zhǎng)為半徑作⊙B,求線段PN與⊙B有一個(gè)交點(diǎn)時(shí),t的范圍.