【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當(dāng)年完工),從當(dāng)年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.

【解析】

(1)直接利用第一年有40家工廠用乙方案治理,共使Q值降低了12,得出等式求出答案;

(2)利用從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家得出等式求出答案;

(3)利用n的值即可得出關(guān)于a的等式求出答案.

1)由題意可得:40n=12,

解得:n=0.3;

(2)由題意可得:40+40(1+m)+40(1+m)2=190,

解得:m1=,m2=﹣(舍去),

∴第二年用乙方案新治理的工廠數(shù)量為:40(1+m)=40(1+50%)=60(家),

(3)設(shè)第一年用乙方案治理降低了100n=100×0.3=30,

則(30﹣a)+2a=39.5,

解得:a=9.5,

Q=20.5.

設(shè)第一年用甲方案整理降低的Q值為x,

第二年Q值因乙方案治理降低了100n=100×0.3=30,

解法一:(30﹣a)+2a=39.5

a=9.5

x=20.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

123×-5--3÷

2)(-3×+8×-2-11÷-);

3)(-12--1×-24);

4-22-3+[1+-2×-1]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為手的示意圖,在各個手指間標記字母A、B、CD.請你按圖中箭頭所指方向(即ABCDCBABC→…的方式)從A開始 數(shù)連續(xù)的正整數(shù)1,2,3,4…,當(dāng)數(shù)到12時,對應(yīng)的字母是_____;當(dāng)字母C201次出現(xiàn)時,恰好數(shù)到的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+x的圖象與x軸交于點 A,B,交 y 軸于點 C,拋物線的頂點為 D

(1)求拋物線頂點 D 的坐標以及直線 AC 的函數(shù)表達式;

(2)點 P 是拋物線上一點,且點P在直線 AC 下方,點 E 在拋物線對稱軸上,當(dāng)△BCE 的周長最小時,求△PCE 面積的最大值以及此時點 P 的坐標;

3)在(2)的條件下,過點 P 且平行于 AC 的直線分別交x軸于點 M,交 y 軸于點N,把拋物線y=x2+x沿對稱軸上下平移,平移后拋物線的頂點為 D',在平移的過程中,是否存在點 D',使得點 D'M,N 三點構(gòu)成的三角形為直角三角形,若存在,直接寫出點 D'的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8臺;而當(dāng)銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設(shè)每臺冰箱的定價為x元,則x滿足的關(guān)系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計劃開展四項活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項活動,學(xué)校為了了解學(xué)生的意愿,隨機調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計如下:

(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補全條形統(tǒng)計圖.

(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,對角線相交于點,分別是對角線BD上的兩點,給出下列四個條件:①;②;③;④.其中能判斷四邊形是平行四邊形的個數(shù)是

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,A、B在數(shù)軸上對應(yīng)的數(shù)分別用、表示,且.

(1)數(shù)軸上點A表示的數(shù)是   ,點B表示的數(shù)是 

(2)若一動點P從點A出發(fā),以3個單位長度/秒速度由A向B運動;動點Q從原點O出發(fā),以1個單位長度/秒速度向B運動,點P、Q同時出發(fā),點Q運動到B點時兩點同時停止.設(shè)點Q運動時間為t秒.

若P從A到B運動,則P點表示的數(shù)為 ,Q點表示的數(shù)為 .用含的式子表示)

②當(dāng)t為何值時,點P與點Q之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)有下列說法:

如果當(dāng)x≤1時的增大而減小,則m1;

如果它的圖象與x軸的兩交點的距離是4,

如果將它的圖象向左平移3個單位后的函數(shù)的最小值是-4,m=-1;

如果當(dāng)x=1時的函數(shù)值與x=2013時的函數(shù)值相等則當(dāng)x=2014時的函數(shù)值為-3

其中正確的說法是

查看答案和解析>>

同步練習(xí)冊答案