【題目】正方形ABCD中,E是CD邊上一點(diǎn),
(1)將△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD,AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線(xiàn)段是 , ∠AFB=∠
(2)如圖2,正方形ABCD中,P,Q分別是BC,CD邊上的點(diǎn),且∠PAQ=45°,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:DQ+BP=PQ
(3)在(2)題中,連接BD分別交AP,AQ于M,N,你還能用旋轉(zhuǎn)的思想說(shuō)明BM2+DN2=MN2 .
【答案】
(1)BF;AED
(2)解:將△ADQ繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,則AD與AB重合,得到△ABE,如圖2,
則∠D=∠ABE=90°,
即點(diǎn)E、B、P共線(xiàn),∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,
∵∠PAQ=45°,
∴∠PAE=45°,
∴∠PAQ=∠PAE,
在△APE和△APQ中
∵ ,
∴△APE≌△APQ(SAS),
∴PE=PQ,
而PE=PB+BE=PB+DQ,
∴DQ+BP=PQ
(3)解:∵四邊形ABCD為正方形,
∴∠ABD=∠ADB=45°,
如圖,將△ADN繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,則AD與AB重合,得到△ABK,
則∠ABK=∠ADN=45°,BK=DN,AK=AN,
與(2)一樣可證明△AMN≌△AMK,得到MN=MK,
∵∠MBA+∠KBA=45°+45°=90°,
∴△BMK為直角三角形,
∴BK2+BM2=MK2,
∴BM2+DN2=MN2.
【解析】解:(1)∵△ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD、AB重合,得到△ABF,
∵DE=BF,∠AFB=∠AED.
故答案為:BF,AED;
(1)直接根據(jù)旋轉(zhuǎn)的性質(zhì)得到DE=BF,∠AFB=∠AED;(2)將△ADQ繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,則AD與AB重合,得到△ABE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,則∠PAE=45°,再根據(jù)全等三角形的判定方法得到△APE≌△APQ,則PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根據(jù)正方形的性質(zhì)有∠ABD=∠ADB=45°,將△ADN繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,則AD與AB重合,得到△ABK,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ABK=∠ADN=45°,BK=DN,AK=AN,與(2)一樣可證明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK為直角三角形,根據(jù)勾股定理得BK2+BM2=MK2 , 然后利用等相等代換即可得到BM2+DN2=MN2 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線(xiàn)AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,AD∥BC,∠BAD=∠DCB,若不增加任何字母和輔助線(xiàn),要使得四邊形ABCD是矩形,則還需要增加一個(gè)條件是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠DAE是四邊形ABCD的一個(gè)外角,且AD平分∠CAE.
求證:DB=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請(qǐng)回答如下問(wèn)題:
(1)在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;
(2)在平面直角坐標(biāo)系中畫(huà)出△A′B′C′,使它與△ABC關(guān)于x軸對(duì)稱(chēng),并寫(xiě)出△A′B′C′三頂點(diǎn)的坐標(biāo);
(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫(xiě)出這點(diǎn)在△A′B′C′內(nèi)部的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有( )
①射線(xiàn)和射線(xiàn)是同一條射線(xiàn).②將一根細(xì)木條固定在墻上,至少需要釘兩個(gè)釘子,其理論依據(jù)是:兩點(diǎn)之間線(xiàn)段最短.③兩點(diǎn)間的連線(xiàn)的長(zhǎng)度叫做這兩點(diǎn)間的距離.
④表示北偏東方向、南偏東方向的兩條射線(xiàn)所夾的角為直角.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長(zhǎng)為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,且滿(mǎn)足|a+3|+(b-9)2018=0,O為原點(diǎn)
(1) 試求a和b的值
(2) 點(diǎn)C從O點(diǎn)出發(fā)向右運(yùn)動(dòng),經(jīng)過(guò)3秒后點(diǎn)C到A點(diǎn)的距離是點(diǎn)C到B點(diǎn)距離的3倍,求點(diǎn)C的運(yùn)動(dòng)速度?
(3) 點(diǎn)D以1個(gè)單位每秒的速度從點(diǎn)O向右運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā)以5個(gè)單位每秒的速度向左運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以20個(gè)單位每秒的速度向右運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,M、N分別為PD、OQ的中點(diǎn),問(wèn)的值是否發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)施漓江補(bǔ)水工程中,某水庫(kù)需要將一段護(hù)坡土壩進(jìn)行改造.在施工質(zhì)量相同的情況下,甲、乙兩施工隊(duì)給出的報(bào)價(jià)分別是:甲施工隊(duì)先收啟動(dòng)資金1000元,以后每填土1立方米收費(fèi)20元,乙施工隊(duì)不收啟動(dòng)資金,但每填土1立方米收費(fèi)25元.
(1)設(shè)整個(gè)工程需要填土為X立方米,選擇甲施工隊(duì)所收的費(fèi)用為Y甲元,選擇乙施工隊(duì)所收的費(fèi)用為Y乙元.請(qǐng)分別寫(xiě)出Y甲、Y乙、關(guān)于X的函數(shù)關(guān)系式;
(2)如圖,土壩的橫截面為梯形,現(xiàn)將背水坡壩底加寬2米,即BE=2米,已知原背水坡長(zhǎng)AB=4,土壩與地面的傾角∠ABC=60度,要改造100米長(zhǎng)的護(hù)坡土壩,選擇哪家施工隊(duì)所需費(fèi)用較少?
(3)如果整個(gè)工程所需土方的總量X立方米的取值范圍是100≤X≤800,應(yīng)選擇哪家施工隊(duì)所需費(fèi)用較少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com