【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BC和AC、AD之間的數(shù)量關(guān)系.

小明發(fā)現(xiàn),利用軸對(duì)稱(chēng)做一個(gè)變化,在BC上截取CA′=CA,連接DA′,得到一對(duì)全等的三角形,從而將問(wèn)題解決(如圖2).

請(qǐng)回答:
(1)在圖2中,小明得到的全等三角形是△≌△
(2)求BC和AC、AD之間的數(shù)量關(guān)系是
(3)參考小明思考問(wèn)題的方法,解決問(wèn)題:
如圖3,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的長(zhǎng).

【答案】
(1)ADC,A′DC
(2)BC=AC+AD
(3)解:如圖,在AB上截取AE=AD,連接CE,如圖3所示:

∵AC平分∠BAD,

∴∠DAC=∠EAC.

在△AEC和△ADC中,

,

∴△ADC≌△AEC(SAS),

∴AE=AD=9,CE=CD=10=BC,

過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,

∴EF=BF,

設(shè)EF=BF=x.

在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2-BF2=102-x2

在Rt△CFA中,∠CFA=90°,由勾股定理得CF2=AC2-AF2=172-(9+x)2

∴102-x2=172-(9+x)2,

解得:x=6,

∴AB=AE+EF+FB=9+6+6=21,

∴AB的長(zhǎng)為21.


【解析】(1)由SAS容易證出△ADC≌△A′DC;
(2)由△ADC≌△A′DC;得出DA′=DA,∠DA′C=∠A=60,再證出BA′=DA′,得出BA′=AD,即可得出結(jié)論;
解決問(wèn)題:如圖,在AB上截取AE=AD,連接CE,先證明△ADC≌△AEC,得出AE=AD=9,CE=CD=10=BC,過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,設(shè)EF=BF=x.在Rt△CFB中和Rt△CFA中根據(jù)勾股定理求出x,即可得出結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)顯示,2013年底某市各類(lèi)高中在校學(xué)生人數(shù)約是11.4萬(wàn)人,將11.4萬(wàn)用科學(xué)記數(shù)法表示應(yīng)為( )
A.11.4×104
B.1.14×104
C.1.14×105
D.0.114×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,點(diǎn)D在線段AB上從點(diǎn)B出發(fā),以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t.

(1)AB= cm,AB邊上的高為 cm;
(2)點(diǎn)D在運(yùn)動(dòng)過(guò)程中,當(dāng)△BCD為等腰三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),B(-3,0),連接AB.將△AOB沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在x軸上的點(diǎn)A′處,折痕所在的直線交y軸正半軸于點(diǎn)C,則點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)參加射擊訓(xùn)練,共設(shè)計(jì)了八發(fā)子彈,環(huán)數(shù)分別是:7,10,9,8,7,9,9,8,則這組數(shù)據(jù)的中位數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:拋物線C1y=x22a x+2a+2 頂點(diǎn)P在另一個(gè)函數(shù)圖象C2上,

1)求證:拋物線C1必過(guò)定點(diǎn)A1,3);并用含的a式子表示頂點(diǎn)P的坐標(biāo);

(2)當(dāng)拋物線C1的頂點(diǎn)P達(dá)到最高位置時(shí),求拋物線C1解析式;并判斷是否存在實(shí)數(shù)m、n,當(dāng)m≤x≤n時(shí)恰有3m≤y≤3n,若存在,求出求m、n的值;若不存在,說(shuō)明理由;

(3)拋物線C1和圖象C2分別與y軸交于B、C點(diǎn),當(dāng)△ABC為等腰三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有40個(gè)數(shù)據(jù),共分成6組,第1~4組的頻數(shù)分別為10,5,7,6,第5組的頻率是0.1,則第6組的頻數(shù)是( 。
A.8
B.28
C.32
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn) M 與點(diǎn) N(-2,-3)關(guān)于 y 軸對(duì)稱(chēng),則點(diǎn) M 的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x+2m=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個(gè)根,且x12+x22=8,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案