【題目】如圖.在直角梯形ABCD中,AD//BC,∠B=90°,AG//CD交BC于點G,點E、F分別為AG、CD的中點,連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)如果點G是BC的中點,且BC=12,DC=10,求四邊形AGCD的面積.
【答案】見解析;48.
【解析】
試題根據(jù)AD∥BC ,AG∥CD得到四邊形AGCD是平行四邊形,從而說明AG=CD,根據(jù)中點得出DF=GE,然后得出平行四邊形;根據(jù)點G是BC的中點得出BG=6,根據(jù)平行四邊形得出DC=10,根據(jù)Rt△ABG的勾股定理得出AB的值,然后計算面積.
試題解析:(1)證明: ∵AD∥BC ,AG∥CD ∴四邊形AGCD是平行四邊形 ∴AG=CD
∵點E、F分別為AG、CD的中點 ∴DF=GE= ∴DF=GE 又DF∥GE
∴四邊形DEGF是平行四邊形.
(2)∵點G是BC的中點,BC=12, ∴BG=CG==6
∵四邊形AGCD是平行四邊形DC=10 AG=DC=10
在Rt△ABG中根據(jù)勾股定理得:AB=8 ∴四邊形AGCD的面積為48.
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一個根,求m的值;
(2)以這個方程的兩個實數(shù)根作為△ABC中AB、AC(AB<AC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直線上擺放著三個正方形
(1)如圖1,已知水平放置的兩個正方形的邊長依次是,斜著放置的正方形的面積_ ;兩個直角三角形的面積之和為____ (均用表示)
(2)如圖2,小正方形面積, 斜著放置的正方形的面積,求圖中兩個鈍角三角形的面積_ ;_
(3)圖3是由五個正方形所搭成的平面圖,與分別表示所在地三角形與正方形的面積,試寫出_ ;_ .(均用表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結果保留三個有效數(shù)字,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網店銷售單價分別為元/筒、元/筒的甲、乙兩種羽毛球.根據(jù)消費者需求,該網店決定用不超過元購進甲、乙兩種羽毛球共簡.且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的.已知甲、乙兩種羽毛球的進價分別為元/筒、元/筒。若設購進甲種羽毛球簡.
(1)該網店共有幾種進貨方案?
(2)若所購進羽毛球均可全部售出,求該網店所獲利潤(元)與甲種羽毛球進貨量(簡)之間的函數(shù)關系式,并求利潤的最大值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=90°,AD∥BC,以B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連接BE,過點C作CF⊥BE,垂足為F.若AB=6,BC=10,則EF的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.
(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)省材料,某水產養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設BC的長度為xm,矩形區(qū)域ABCD的面積為ym2.
(1)求y與x之間的函數(shù)關系式,并注明自變量x的取值范圍;
(2)x為何值時,y有最大值?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com