如圖,雙曲線y=
k
x
與直線y=mx相交于A、B兩點(diǎn),M為此雙曲線在第一象限內(nèi)的任一點(diǎn)(M在A點(diǎn)左側(cè)),設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且p=
MB
MQ
q=
MA
MP
,則p-q的值為______.
∵雙曲線y=
k
x
與直線y=mx相交于A、B兩點(diǎn),
∴設(shè)A(m,n)則B(-m,-n),
過(guò)A作AN⊥y軸于N,過(guò)M作MH⊥y軸于H,過(guò)B作BG⊥y軸于G,
則BG=AN=m,
∴MHANBG,
BQ
MQ
=
BG
MH
,
∴p=
MB
MQ
=
MQ+BQ
MQ
=1+
BQ
MQ
=1+
BG
MH
,
AP
PM
=
AN
MH
,
AM+MP
MP
=
AN
MH

即1+
AM
MP
=
AN
MH
,
∴q=
AM
MP
=
AN
MH
-1,
∵BG=AN,
∴p-q=(1+
BG
MH
)-(
AN
MH
-1)=2.
故答案為:2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)y=kx+b與雙曲線y=
4
x
在第一象限交于A、B兩點(diǎn),A點(diǎn)橫坐標(biāo)為1.B點(diǎn)橫坐標(biāo)為4.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象指出不等式kx+b>
4
x
的解集;
(3)點(diǎn)P是x軸正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作x軸的垂線分別交直線和雙曲線于M、N,設(shè)P點(diǎn)的橫坐標(biāo)是t(t>0),△OMN的面積為S,求S和t的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸,y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=
m
x
(m≠0)的圖象的第一象限交于點(diǎn)C,CD垂直于x軸,垂足為D,若OA=OB=OD=1,求:
(1)求點(diǎn)A、B、D的坐標(biāo):A______,B______,D______;
(2)求一次函數(shù)的解析式:______;
(3)求反比例函數(shù)的解析式:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線y=2x-1與雙曲線y=
k
x
交于第一象限內(nèi)一點(diǎn)A(m,1)
(1)直接寫出該雙曲線的函數(shù)表達(dá)式:______.
(2)根據(jù)圖象直接寫出解不等式2x-1>
1
x
(x>0)的解集:______.
(3)若點(diǎn)B(
a2+b2
2ab
,n)(a≠b)在雙曲線y=
k
x
上,點(diǎn)P(x0,0)是x負(fù)半軸上一動(dòng)點(diǎn),分別過(guò)點(diǎn)A、B作x軸的垂線交于點(diǎn)E1和點(diǎn)E2,連接PA、PB.
①求證:n<1;
②當(dāng)P點(diǎn)沿x軸向點(diǎn)E1運(yùn)動(dòng)的過(guò)程中,試探索△PAE1的面積與△PBE2面積的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y1=-2x經(jīng)過(guò)點(diǎn)P(-2,a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)y2=
k
x
(k≠0)的圖象上.
(1)求點(diǎn)P′的坐標(biāo);
(2)求反比例函數(shù)的解析式,并說(shuō)明反比例函數(shù)的增減性;
(3)直接寫出當(dāng)y2<2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀材料:
若a,b都是非負(fù)實(shí)數(shù),則a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:
已知x>0,求函數(shù)y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.當(dāng)且僅當(dāng)2x=
2
x
,即x=1時(shí),“=”成立.
當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.
問(wèn)題解決:
汽車的經(jīng)濟(jì)時(shí)速是指汽車最省油的行駛速度.某種汽車在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若該汽車以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知反比例函數(shù)y1=
k
x
和一次函數(shù)y2=ax+1的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)的圖象與x軸相交于點(diǎn)C,求線段AC的長(zhǎng)度.
(3)直接寫出:當(dāng)y1>y2>0時(shí),x的取值范圍.
(4)在y軸上是否存在一點(diǎn)P,使△PAO為等腰三角形?若存在,請(qǐng)直接寫出p點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(要求至少寫兩個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

結(jié)合所給的閱讀材料,求解問(wèn)題.
材料:在直角坐標(biāo)系中,如果有兩點(diǎn)A(a,b),B(a,0),那么稱點(diǎn)B是點(diǎn)A在x軸上的射影.
問(wèn)題:如圖,測(cè)得飛機(jī)的運(yùn)動(dòng)曲線是雙曲線,飛機(jī)在點(diǎn)M的坐標(biāo)為(-4500
3
,1125),炮彈在點(diǎn)O處沿α角向飛機(jī)射擊,在點(diǎn)N處命中目標(biāo),此時(shí)點(diǎn)N在x軸上的射影坐標(biāo)為(-2250
3
,0),已知α=30°,炮彈飛行速度為750米/秒.
問(wèn):炮彈從發(fā)射到擊中目標(biāo)用了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在矩形A0BC中,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.E是邊AC上的一個(gè)動(dòng)點(diǎn)(不與A,C重合),過(guò)E點(diǎn)的反比例函數(shù)y=
k
x
(k>0)
的圖象與BC邊交于點(diǎn)F.
(1)若△OAE、△OBF的面積分別為S1、S2且S1+S2=2,求k的值;
(2)若OB=4,OA=3,記S=S△OEF-S△ECF問(wèn)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),S有最大值,其最大值為多少?
(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)E,使得將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案