【題目】數(shù)學(xué)課上,王老師出示了如下框中的題目.

小明與同桌小聰討論后,進(jìn)行了如下解答:

1)特殊情況探索結(jié)論:在等邊三角形ABC中,當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),點(diǎn)DCB點(diǎn)延長(zhǎng)線上,且ED=EC;如圖1,確定線段AEDB的大小關(guān)系.請(qǐng)你直接寫出結(jié)論 ;

2)特例啟發(fā),解答題目

王老師給出的題目中,AEDB的大小關(guān)系是: .理由如下:

如圖2,過點(diǎn)EEFBC,交AC于點(diǎn)F,(請(qǐng)你完成以下解答過程)

3)拓展結(jié)論,設(shè)計(jì)新題

ABC中,AB=BC=AC=1;點(diǎn)EAB的延長(zhǎng)線上,AE=2;點(diǎn)DCB的延長(zhǎng)線上,ED=EC,如圖3,請(qǐng)直接寫CD的長(zhǎng)

【答案】1;(2,見詳解;(33.

【解析】

1)根據(jù)等邊三角形三線合一的性質(zhì)可知BE=AE,利用角的度數(shù)證明,可得,等量代換即可;

2)過點(diǎn)EEFBCAC于點(diǎn)F,利用AAS即可得結(jié)論;

3)作EFBCAC的延長(zhǎng)線于點(diǎn)F,利用等邊三角形及平行線的性質(zhì)易證,可得BD長(zhǎng),CD長(zhǎng)可知.

解:(1是等邊三角形

點(diǎn)EAB的中點(diǎn)

的角平分線

2

如圖,過點(diǎn)EEFBCAC于點(diǎn)F

是等邊三角形,

3)作EFBCAC的延長(zhǎng)線于點(diǎn)F

是等邊三角形

,且AE=AF=EF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,延長(zhǎng)線上一點(diǎn),的平分線相交于點(diǎn),則(  。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形方格紙中,我們把頂點(diǎn)都在格點(diǎn)上的三角形稱為格點(diǎn)三角形,如圖,△ABC是一個(gè)格點(diǎn)三角形,點(diǎn)A的坐標(biāo)為(﹣1,2).

(1)點(diǎn)B的坐標(biāo)為   ,ABC的面積為   ;

(2)在所給的方格紙中,請(qǐng)你以原點(diǎn)O為位似中心,將△ABC放大為原來的2倍,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A1、B1,點(diǎn)B1在第一象限;

(3)在(2)中,若P(a,b)為線段AC上的任一點(diǎn),則放大后點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1所示,在RtABC中,∠ACB=90°,AC=BC,點(diǎn)D在斜邊AB上,點(diǎn)E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.

(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點(diǎn)EBC上,連接AE,過點(diǎn)EEFAECD(或CD的延長(zhǎng)線)于點(diǎn)F.

①若BE:EC=1:9,求CF的長(zhǎng);

②若點(diǎn)F恰好與點(diǎn)D重合,請(qǐng)?jiān)趥溆脠D上畫出圖形,并求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求PQ的長(zhǎng);

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC,BC=3,A=22.5°,將△ABC翻折使得點(diǎn)B與點(diǎn)A重合,折痕與邊AC交于點(diǎn)P,如果AP=4,那么AC的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC,ADBC,點(diǎn)D為垂足,AD=BD,點(diǎn)EAD,BE=AC

1)求證:BDE≌△ADC

2)若MN分別是BE、AC的中點(diǎn),分別聯(lián)結(jié)DM、DN. 求證:DMDN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,PAB邊上一點(diǎn),將△BCP沿CP折疊,得到△FCP.

(1)如圖1,延長(zhǎng)PFADE,求證:EF=ED;

(2)如圖2,DF,CP的延長(zhǎng)線交于點(diǎn)G,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市制米廠接到加工大米任務(wù),要求5天內(nèi)加工完220噸大米,制米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時(shí)間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時(shí)完成加工任務(wù)為止.設(shè)甲、乙兩車間各自加工大米數(shù)量y(噸)與甲車間加工時(shí)間s(天)之間的關(guān)系如圖(1)所示;未加工大米w(噸)與甲加工時(shí)間x(天)之間的關(guān)系如圖(2)所示,請(qǐng)結(jié)合圖象回答下列問題:

(1)甲車間每天加工大米   噸,a=   

(2)求乙車間維修設(shè)備后,乙車間加工大米數(shù)量y(噸)與x(天)之間函數(shù)關(guān)系式.

(3)若55噸大米恰好裝滿一節(jié)車廂,那么加工多長(zhǎng)時(shí)間裝滿第一節(jié)車廂?再加工多長(zhǎng)時(shí)間恰好裝滿第二節(jié)車廂?

查看答案和解析>>

同步練習(xí)冊(cè)答案