【題目】如圖,拋物線y=x2+bx+c的頂點(diǎn)為D(﹣1,﹣4),與y軸交于點(diǎn)C(0,﹣3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點(diǎn)E在拋物線的對(duì)稱軸上,拋物線上是否存在點(diǎn)F,使以A,B,E,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形?若存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:由題意得 ,
解得:b=2,c=﹣3,
則解析式為:y=x2+2x﹣3
(2)
解:由題意結(jié)合圖形
則解析式為:y=x2+2x﹣3,
解得x=1或x=﹣3,
由題意點(diǎn)A(﹣3,0),
∴AC= ,CD= ,AD= ,
由AC2+CD2=AD2,
所以△ACD為直角三角形
(3)
解:∵A(﹣3,0),B(1,0),
∴AB=4,
∵點(diǎn)E在拋物線的對(duì)稱軸上,
∴點(diǎn)E的橫坐標(biāo)為﹣1,
當(dāng)AB為平行四邊形的一邊時(shí),EF=AB=4,
∴F的橫坐標(biāo)為3或﹣5,
把x=3或﹣5分別代入y=x2+2x﹣3,得到F的坐標(biāo)為(3,12)或(﹣5,12);
當(dāng)AB為平行四邊形的對(duì)角線時(shí),由平行四邊形的對(duì)角線互相平分,
∴F點(diǎn)必在對(duì)稱軸上,即F點(diǎn)與D點(diǎn)重合,
∴F(﹣1,﹣4).
∴所有滿足條件的點(diǎn)F的坐標(biāo)為(3,12),(﹣5,12),(﹣1,﹣4).
【解析】(1)由定點(diǎn)列式計(jì)算,從而得到b,c的值而得解析式;(2)由解析式求解得到點(diǎn)A,得到AC,CD,AD的長(zhǎng)度,而求證;(3)由(2)得到的結(jié)論,進(jìn)行代入,要使以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形,必須滿足的條件是AB平行且等于EF,那么只需將E點(diǎn)的坐標(biāo)向左或向右平移AB長(zhǎng)個(gè)單位即可得出F點(diǎn)的坐標(biāo),然后將得出的F點(diǎn)坐標(biāo)代入拋物線的解析式中,即可判斷出是否存在符合條件的F點(diǎn).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點(diǎn),O是三角形內(nèi)部一點(diǎn),連接OB、OC,G、H分別是OC、OB的中點(diǎn),試說(shuō)明四邊形DEGH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計(jì)了15人某月的加工零件個(gè)數(shù):
加工件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫(xiě)出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).
(2)假如生產(chǎn)部負(fù)責(zé)人把每位工人的月加工零件數(shù)定為260(件),你認(rèn)為這個(gè)定額是否合理,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4.
(1)隨機(jī)摸取一個(gè)小球,求恰好摸到標(biāo)號(hào)為2的小球的概率;
(2)隨機(jī)摸取一個(gè)小球然后放回,再隨機(jī)摸取一個(gè)小球,求兩次摸取的小球的標(biāo)號(hào)的和為5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的內(nèi)心在y軸上,點(diǎn)C的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)是(0,2),直線AC的解析式為 ,則tanA的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩條筆直的公路l1、l2相交于點(diǎn)O,村莊C的村民在公路的旁邊建三個(gè)加工廠 A、B、D,已知AB=BC=CD=DA=5公里,村莊C到公路l1的距離為4公里,則村莊C到公路l2的距離是( )
A.3公里
B.4公里
C.5公里
D.6公里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有甲、乙兩個(gè)小分隊(duì)分別同時(shí)從B、C兩地出發(fā)前往A地,甲沿線路BA行進(jìn),乙沿線路CA行進(jìn),已知C在A的南偏東55°方向,AB的坡度為1:5,同時(shí)由于地震原因造成BC路段泥石堵塞,在BC路段中位于A的正南方向上有一清障處H,負(fù)責(zé)搶修BC路段,已知BH為12000m.
(1)求BC的長(zhǎng)度;
(2)如果兩個(gè)分隊(duì)在前往A地時(shí)勻速前行,且甲的速度是乙的速度的三倍.試判斷哪個(gè)分隊(duì)先到達(dá)A地.(tan55°≈1.4,sin55°≈0.84,cos55°≈0.6, ≈5.01,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙的思考.
用一張矩形紙片折等邊三角形.
第一步,對(duì)折矩形紙片ABCD(AB>BC)(圖①),使AB與DC重合,得到折痕EF,把紙片展平(圖②).
第二步,如圖③,再一次折疊紙片,使點(diǎn)C落在EF上的P處,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BG,折出PB,PC,得到△PBC.
(1)說(shuō)明△PBC是等邊三角形.
(2)如圖④,小明畫(huà)出了圖③的矩形ABCD和等邊三角形PBC,他發(fā)現(xiàn),在矩形ABCD中把△PBC經(jīng)過(guò)圖形變化,可以得到圖⑤中的更大的等邊三角形,請(qǐng)描述圖形變化的過(guò)程.
(3)已知矩形一邊長(zhǎng)為3cm,另一邊長(zhǎng)為a cm,對(duì)于每一個(gè)確定的a的值,在矩形中都能畫(huà)出最大的等邊三角形,請(qǐng)畫(huà)出不同情形的示意圖,并寫(xiě)出對(duì)應(yīng)的a的取值范圍.
(4)用一張正方形鐵片剪一個(gè)直角邊長(zhǎng)分別為4cm和1cm的直角三角形鐵片,求所需正方形鐵片的邊長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com