【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C(0,3),tan∠OAC=

(1)求拋物線的解析式;
(2)點(diǎn)H是線段AC上任意一點(diǎn),過H作直線HN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)P,求線段PH的最大值;
(3)點(diǎn)M是拋物線上任意一點(diǎn),連接CM,以CM為邊作正方形CMEF,是否存在點(diǎn)M使點(diǎn)E恰好落在對(duì)稱軸上?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)

解:∵C(0,3),

∴OC=3,

∵tan∠OAC=

∴OA=4,

∴A(﹣4,0).

把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,

,解得:

∴拋物線的解析式為y=﹣ x2 x+3


(2)

解:設(shè)直線AC的解析式為y=kx+b,

把A(﹣4,0)、C(0,3)代入y=kx+b中,

得: ,解得: ,

∴直線AC的解析式為y= x+3.

設(shè)N(x,0)(﹣4<x<0),則H(x, x+3),P(x,﹣ x2 x+3),

∴PH=﹣ x2 x+3﹣( x+3)=﹣ x2 x=﹣ (x+2)2+

∵﹣ <0,

∴PH有最大值,

當(dāng)x=﹣2時(shí),PH取最大值,最大值為


(3)

解:過點(diǎn)M作MK⊥y軸于點(diǎn)K,交對(duì)稱軸于點(diǎn)G,則∠MGE=∠MKC=90°,

∴∠MEG+∠EMG=90°,

∵四邊形CMEF是正方形,

∴EM=MC,∠MEC=90°,

∴∠EMG+∠CMK=90°,

∴∠MEG=∠CMK.

在△MCK和△MEG中, ,

∴△MCK≌△MEG(AAS),

∴MG=CK.

由拋物線的對(duì)稱軸為x=﹣1,設(shè)M(x,﹣ x2 x+3),則G(﹣1,﹣ x2 x+3),K(0,﹣ x2 x+3),

∴MG=|x+1|,CK=|﹣ x2 x+3﹣3|=|﹣ x2 x|=| x2+ x|,

∴|x+1|=| x2+ x|,

x2+ x=±(x+1),

解得:x1=﹣4,x2=﹣ ,x3=﹣ ,x4=2,

代入拋物線解析式得:y1=0,y2= ,y3= ,y4=0,

∴點(diǎn)M的坐標(biāo)是(﹣4,0),(﹣ , ),(﹣ , )或(2,0).


【解析】(1)由點(diǎn)C的坐標(biāo)以及tan∠OAC= 可得出點(diǎn)A的坐標(biāo),結(jié)合點(diǎn)A、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)直線AC的解析式為y=kx+b,由點(diǎn)A、C的解析式利用待定系數(shù)法即可求出直線AC的解析式,設(shè)N(x,0)(﹣4<x<0),可找出H、P的坐標(biāo),由此即可得出PH關(guān)于x的解析式,利用配方法即二次函數(shù)的性質(zhì)即可解決最值問題;(3)過點(diǎn)M作MK⊥y軸于點(diǎn)K,交對(duì)稱軸于點(diǎn)G,根據(jù)角的計(jì)算依據(jù)正方形的性質(zhì)即可得出△MCK≌△MEG(AAS),進(jìn)而得出MG=CK.設(shè)出點(diǎn)M的坐標(biāo)利用正方形的性質(zhì)即可得出點(diǎn)G、K的坐標(biāo),由正方形的性質(zhì)即可得出關(guān)于x的含絕對(duì)值符號(hào)的一元二次方程,解方程即可求出x值,將其代入拋物線解析式中即可求出點(diǎn)M的坐標(biāo).本題考查了待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、正方形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用待定系數(shù)法求出拋物線解析式;(2)根據(jù)二次函數(shù)的性質(zhì)解決最值問題;(3)根據(jù)正方形的性質(zhì)得出關(guān)于x的含絕對(duì)值符號(hào)的一元二次方程.本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)正方形的性質(zhì)找出關(guān)于x的含絕對(duì)值符號(hào)的一元二次方程,解方程求出點(diǎn)的橫坐標(biāo)是關(guān)鍵.
【考點(diǎn)精析】通過靈活運(yùn)用二次函數(shù)的性質(zhì)和正方形的性質(zhì),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),

C(3,4)

⑴ 作出與△ABC關(guān)于y軸對(duì)稱△A1B1C1,并寫出 三個(gè)頂點(diǎn)的坐標(biāo)為:A1 ),B1 ),C1 );

⑵ 在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);

⑶ 在 y 軸上是否存在點(diǎn) Q,使得SAOQ=SABC,如果存在,求出點(diǎn) Q 的坐標(biāo),如果不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

北京時(shí)間2015731國際奧委會(huì)主席巴赫宣布中國北京獲得2022年第24界冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán),近期新建北京至張家口鐵路可行性研究報(bào)告已經(jīng)獲得國家發(fā)改委批復(fù),鐵路全長約180千米,按照設(shè)計(jì)京張高鐵列車的平均行駛速度是普通快車的1.5,用時(shí)比普通快車用時(shí)少了20分鐘,求京張高鐵列車的平均行駛速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察圖形

如圖1,△ABC,AB=AC,∠BAC=45°,CDAB,AEBC,垂足分別為D、ECDAE交于點(diǎn)F

寫出圖1中所有的全等三角形_________________;

線段AF與線段CE的數(shù)量關(guān)系是_________________;

(2)問題探究

如圖2,△ABC,∠BAC=45°,AB=BC,AD平分BACADCD垂足為D,ADBC交于點(diǎn)E

求證AE=2CD

(3)拓展延伸

如圖3,△ABC,∠BAC=45°,AB=BC,點(diǎn)DAC,∠EDC=BAC,DECE,垂足為E,DEBC交于點(diǎn)F

求證DF=2CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程組解應(yīng)用題:打折前,買 10 件 A 商品和 5 件 B 商品共用了 400 元,買 5 件 A 商品和 10件 B 商品共用了 350 元.

(1)求打折前 A 商品、B 商品每件分別多少錢?

(2)打折后,買 100 件 A 商品和 100 件 B 商品共用了 3800 元.比不打折少花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼.有一種用因式分解法產(chǎn)生的密碼,方便記憶.原理是:如對(duì)于多項(xiàng)式x4-y4,因式分解的結(jié)果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時(shí),則各個(gè)因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個(gè)六位數(shù)的密碼.對(duì)于多項(xiàng)式4x3-xy2,取x=10,y=10時(shí),用上述方法產(chǎn)生的密碼共有多少種?請(qǐng)你分別寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長;

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

查看答案和解析>>

同步練習(xí)冊(cè)答案